Synergizing between interband and intraband defect states in prolonging the charge carrier lifetime of InSe/SiH heterojunctions.

Phys Chem Chem Phys

College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Experiments have demonstrated that defect states can regulate the charge carrier dynamics in heterojunctions. However, the underlying mechanism still remains under debate. Using nonadiabatic molecular dynamics, we have investigated the influence of inter and intraband defect states on charge relaxation in InSe/SiH heterojunctions. The simulations revealed that inter and intraband defect states have a weak effect on electron transfer, whereas they exert a strong influence on hole transfer and electron-hole recombination. Compared to the pristine system, the selenium vacancy creates two interband shallow electron trapping states and one intraband hole trapping state. The interband electron trapping states can capture photo-generated electrons, while the intraband hole trapping state accelerates hole transfer. The synergy between inter and intraband defect states suppresses the charge recombination by a factor of 8.3. This simulation rationalizes the influence mechanism of inter and intraband defect states on charge carrier dynamics, suggesting a valuable principle for enhancing the performance of heterojunction photocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp03565hDOI Listing

Publication Analysis

Top Keywords

defect states
24
intraband defect
20
inter intraband
16
charge carrier
12
states
8
inse/sih heterojunctions
8
carrier dynamics
8
states charge
8
hole transfer
8
electron trapping
8

Similar Publications

Inter-modality feature prediction through multimodal fusion for 3D shape defect detection.

Neural Netw

September 2025

School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.

3D shape defect detection plays an important role in autonomous industrial inspection. However, accurate detection of anomalies remains challenging due to the complexity of multimodal sensor data, especially when both color and structural information are required. In this work, we propose a lightweight inter-modality feature prediction framework that effectively utilizes multimodal fused features from the inputs of RGB, depth and point clouds for efficient 3D shape defect detection.

View Article and Find Full Text PDF

Hydroxychloroquine Toxicity with Short Duration of Hydroxychloroquine Use and Unilateral Bull's Eye Maculopathy.

Retin Cases Brief Rep

September 2025

Doheny Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, USA.

Purpose: To report the examination and multimodal imaging findings of a patient with unilateral bull's eye maculopathy.

Methods: A retrospective chart review of a 77-year-old patient with unilateral bull's eye maculopathy who presented to a tertiary retinal practice was performed. The patient's history, visual acuity, examination and multimodal imaging findings over five years of follow-up were described.

View Article and Find Full Text PDF

Ionic Liquid Engineered Defect-Driven Green Emitting Zero-Dimensional CsPbBr Microdisks.

J Phys Chem Lett

September 2025

School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda, Bhubaneswar 752050, Odisha, India.

Quantum-confined perovskites represent an emerging class of materials with great potential for optoelectronic applications. Specifically, zero-dimensional (0D) perovskites have garnered significant attention for their unique excitonic properties. However, achieving phase-pure, size-tunable 0D perovskite materials and gaining a clear understanding of their photophysical behavior remains challenging.

View Article and Find Full Text PDF

Microglia contribute to bipolar depression through Serinc2-dependent phospholipid synthesis.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.

Although clinical research has revealed microglia-related inflammatory and immune responses in bipolar disorder (BD) patient brains, it remains unclear how microglia contribute to the pathogenesis of BD. Here, we demonstrated that Serinc2 is associated with susceptibility to BD and showed a reduced expression in BDII patient plasma, which correlated with the disease severity. Using induced pluripotent stem cell (iPSC) models of sporadic and familial BDII patients, we found that Serinc2 expression showed deficits in iPSC-derived microglia-like cells, resulting in decreased synaptic pruning.

View Article and Find Full Text PDF

Loss of actin cytoskeleton control can hinder integral developmental and physiological processes and can be the basis for a subset of developmental defects. SHROOM3 is an actin binding protein, best characterized as being essential for neural tube closure in vertebrates. Shroom3 expression has also been identified in the developing heart, with some associated congenital heart defects.

View Article and Find Full Text PDF