Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-homologous chromosomal contacts (NHCCs) between different chromosomes participate considerably in gene and genome regulation. Due to analytical challenges, NHCCs are currently considered as singular, stochastic events, and their extent and fundamental principles across cell types remain controversial. We develop a supervised and unsupervised learning algorithm, termed Signature, to call NHCCs in Hi-C datasets to advance our understanding of genome topology. Signature reveals 40,282 NHCCs and their properties across 62 Hi-C datasets of 53 diploid human cell types. Genomic regions of NHCCs are gene-dense, highly expressed, and harbor genes for cell-specific and sex-specific functions. Extensive inter-telomeric and inter-centromeric clustering occurs across cell types [Rabl's configuration] and 61 NHCCs are consistently found at the nuclear speckles. These constitutive 'anchor loci' facilitate an axis of genome activity whilst cell-type-specific NHCCs act in discrete hubs. Our results suggest that non-random chromosome positioning is supported by constitutive NHCCs that shape genome topology along an off-centered spatial gradient of genome activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557711PMC
http://dx.doi.org/10.1038/s41467-024-53983-yDOI Listing

Publication Analysis

Top Keywords

genome topology
12
cell types
12
spatial gradient
8
nhccs
8
hi-c datasets
8
genome activity
8
genome
6
inter-chromosomal contacts
4
contacts demarcate
4
demarcate genome
4

Similar Publications

Genomes are composed of a mosaic of segments inherited from different ancestors, each separated by past recombination events. Consequently, genealogical relationships among multiple genomes vary spatially across different genomic regions. Genealogical variation among unlinked (uncorrelated) genomic regions is well described for either a single population (coalescent) or multiple structured populations (multispecies coalescent).

View Article and Find Full Text PDF

The Ancestral Recombination Graph (ARG), which describes the genealogical history of a sample of genomes, is a vital tool in population genomics and biomedical research. Recent advancements have substantially increased ARG reconstruction scalability, but they rely on approximations that can reduce accuracy, especially under model misspecification. Moreover, they reconstruct only a single ARG topology and cannot quantify the considerable uncertainty associated with ARG inferences.

View Article and Find Full Text PDF

Topologically associating domains (TADs) and chromatin architectural loops impact promoter-enhancer interactions, with CCCTC-binding factor (CTCF) defining TAD borders and loop anchors. TAD boundaries and loops progressively strengthen upon embryonic stem (ES) cell differentiation, underscoring the importance of chromatin topology in ontogeny. However, the mechanisms driving this process remain unclear.

View Article and Find Full Text PDF

Aims: The clusterin (CLU) gene is genetically associated with Alzheimer's disease (AD), and CLU levels have been shown to positively correlate with regional Aβ deposition in the brain, including in arteries from cerebral amyloid angiopathy (CAA) patients. CLU has also been shown to alter the aggregation, toxicity and blood-brain barrier transport of amyloid beta (Aβ) and has therefore been suggested to play a key role in regulating the balance between Aβ deposition and clearance in both the brain and cerebral blood vessels. However, it remains unclear whether the role of clusterin in relation to Aβ deposition is protective or pathogenic.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) relevant to osteoporosis have identified hundreds of loci; however, understanding how these variants influence the phenotype is complicated because most reside in non-coding DNA sequence that serves as transcriptional enhancers and repressors. To advance knowledge on these regulatory elements in osteoclasts (OCs), we performed Micro-C analysis, which informs on the genome topology of these cells and integrated the results with transcriptome and GWAS data to further define loci linked to BMD. Using blood cells isolated from 4 healthy participants aged 31-61 yr, we cultured OC in vitro and generated a Micro-C chromatin conformation capture dataset.

View Article and Find Full Text PDF