A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Revealing single-neuron and network-activity interaction by combining high-density microelectrode array and optogenetics. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The synchronous activity of neuronal networks is considered crucial for brain function. However, the interaction between single-neuron activity and network-wide activity remains poorly understood. This study explored this interaction within cultured networks of rat cortical neurons. Employing a combination of high-density microelectrode array recording and optogenetic stimulation, we established an experimental setup enabling simultaneous recording and stimulation at a precise single-neuron level that can be scaled to the level of the whole network. Leveraging our system, we identified a network burst-dependent response change in single neurons, providing a possible mechanism for the network-burst-dependent loss of information within the network and consequent cognitive impairment during epileptic seizures. Additionally, we directly recorded a leader neuron initiating a spontaneous network burst and characterized its firing properties, indicating that the bursting activity of hub neurons in the brain can initiate network-wide activity. Our study offers valuable insights into brain networks characterized by a combination of bottom-up self-organization and top-down regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555060PMC
http://dx.doi.org/10.1038/s41467-024-53505-wDOI Listing

Publication Analysis

Top Keywords

high-density microelectrode
8
microelectrode array
8
network-wide activity
8
activity
5
revealing single-neuron
4
single-neuron network-activity
4
network-activity interaction
4
interaction combining
4
combining high-density
4
array optogenetics
4

Similar Publications