A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Tandem-Controlled Dynamic DNA Assembly Enables Temporally-Selective Orthogonal Regulation of cGAS-STING Stimulation. | LitMetric

Tandem-Controlled Dynamic DNA Assembly Enables Temporally-Selective Orthogonal Regulation of cGAS-STING Stimulation.

Angew Chem Int Ed Engl

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite advances in the controlled reconfiguration of DNA structures for biological applications, the dearth of strategies that allow for orthogonal regulation of immune pathways remains a challenge. Here, we report for the first time an endogenous and exogenous tandem-regulated DNA assembly strategy that enables orthogonally controlled stimulation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. A DNA motif containing two palindromic sequences is engineered with an abasic site (AP)-connected blocking sequence to inhibit its self-assembly function, while apurinic/apyrimidinic endonuclease 1 (APE1)-triggered enzymatic cleavage of the AP site enables the reconfiguration and self-assembly of DNA motif into long double-stranded structures, thus realizing allosteric activation of the catalytic activity of cGAS to produce 2'3'-cyclic-GMP-AMP for STING stimulation. Importantly, we demonstrate that APE1-regulated DNA assembly allows for cell-selective activation of cGAS-STING signaling. Furthermore, by re-engineering the DNA motif with a photocleavable group, enzyme-triggered DNA assembly allows the cGAS-STING stimulation to operate (switched "ON"), whereas light-mediated fragmentation of the double-stranded DNA enables termination of such stimulation (switched "OFF"), thereby achieving orthogonal control over immune regulation. This work highlights an endogenous and exogenous tandem regulated strategy to modulate the cGAS-STING pathway in an orthogonally controlled manner.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202417916DOI Listing

Publication Analysis

Top Keywords

dna assembly
16
dna motif
12
dna
9
orthogonal regulation
8
cgas-sting stimulation
8
endogenous exogenous
8
orthogonally controlled
8
assembly allows
8
stimulation
5
tandem-controlled dynamic
4

Similar Publications