98%
921
2 minutes
20
Human coronavirus (CoV) HKU1 infection typically causes common cold but can lead to pneumonia in children, older people, and immunosuppressed individuals. Recently, human transmembrane serine protease 2 (hTMPRSS2) was identified as the functional receptor for HKU1, but its region and residues critical for HKU1 S binding remain elusive. In this study, we find that HKU1 could utilize human and hamster, but not rat, mouse, or bat TMPRSS2 for virus entry, displaying a narrow host range. Using human-bat TMPRSS2 chimeras, we show that the serine peptidase (SP) domain of TMPRSS2 is essential for entry of HKU1. Further extensive mutagenesis analyses of the C-terminal regions of SP domains of human and bat TMPRSS2s identify residues 417 and 469 critical for entry of HKU1. Replacement of either D417 or Y469 with asparagine in hTMPRSS2 abolishes its abilities to mediate entry of HKU1 S pseudovirions and cell-cell fusion, whereas substitution of N417 with D or N469 with Y in bat TMPRSS2 (bTMPRSS2) renders it supporting HKU1 entry. Our findings contribute to a deeper understanding of coronavirus-receptor interactions and cross-species transmission.IMPORTANCEThe interactions of coronavirus (CoV) S proteins with their cognate receptors determine the host range and cross-species transmission potential. Recently, human transmembrane serine protease 2 (hTMPRSS2) was found to be the receptor for HKU1. Here, we show that the TMPRSS2 of hamster, but not rat, mouse, or bat, can serve as a functional entry receptor for HKU1. Moreover, swapping the residues at the positions of 417 and 469 of bTMPRSS2 with the corresponding residues of hTMPRSS2 confers it supporting entry of HKU1 S pseudovirions, indicating the critical role of these residues in HKU1 entry. Our study identified the critical residues in hTMPRSS2 responsible for receptor interaction and host range of HKU1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650973 | PMC |
http://dx.doi.org/10.1128/jvi.01587-24 | DOI Listing |
Pestic Biochem Physiol
November 2025
Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China. Electronic address:
The genus Alternaria comprises a wide range of ubiquitous plant pathogens that affect various host plants. Certain mycoviruses can induce changes in the biological characteristics and virulence of host fungi, offering potential for biocontrol in managing fungal plant diseases. Here, we identified a mycovirus with a high degree of homology to Alternaria arborescens victorivirus 1 (AaVV1), which was previously reported from Alternaria arborescens, in the QRH strain of the heterologous host Alternaria gomphrenae.
View Article and Find Full Text PDFTrends Pharmacol Sci
September 2025
Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria.
The escalating threat of antimicrobial resistance demands innovative therapeutic strategies beyond classical targets. Recent insights into the mechanisms of bacterial iron acquisition - ranging from siderophores and heme uptake to ferrous iron transport - have enabled new approaches to impair pathogen growth and virulence. These pathways are increasingly being harnessed for therapeutic gain.
View Article and Find Full Text PDFJ Invertebr Pathol
September 2025
The Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines.
White spot syndrome virus (WSSV), the causative agent of white spot disease, remains a serious threat to crustacean aquaculture. Infecting a wide range of crustaceans, host species exhibit varying susceptibility and mortality rates. Mud crabs, Scylla serrata, a high-value aquaculture commodity across the Indo-Pacific region, are known to be relatively resistant to WSSV.
View Article and Find Full Text PDFMicrob Pathog
September 2025
Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Postal code 442001, Wardha, Maharashtra, India.
Concerningly, multidrug-resistant bacteria have emerged as a prime worldwide trouble, obstructing the treatment of infectious diseases and causing doubts about the therapeutic accidentalness of presently existing drugs. Novel antimicrobial interventions deserve development as conventional antibiotics are incapable of keeping pace with bacteria evolution. Various promising approaches to combat MDR infections are discussed in this review.
View Article and Find Full Text PDFJ Econ Entomol
September 2025
Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
Sublethal concentrations of insecticides are commonly encountered in agricultural environments, particularly by pests such as the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), which primarily infests host plants during the larval stage. Sublethal concentrations of insecticides can elicit a wide range of effects; therefore, it is important to consider the impact of thiamethoxam, a registered control insecticide for B. dorsalis.
View Article and Find Full Text PDF