A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nanocarriers for intracellular delivery of proteins in biomedical applications: strategies and recent advances. | LitMetric

Nanocarriers for intracellular delivery of proteins in biomedical applications: strategies and recent advances.

J Nanobiotechnology

Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Protein drugs are of great importance in maintaining the normal functioning of living organisms. Indeed, they have been instrumental in combating tumors and genetic diseases for decades. Among these pharmaceutical agents, those that target intracellular components necessitate the use of therapeutic proteins to exert their effects within the targeted cells. However, the use of protein drugs is limited by their short half-life and potential adverse effects in the physiological environment. The advent of nanoparticles offers a promising avenue for prolonging the half-life of protein drugs. This is achieved by encapsulating proteins, thereby safeguarding their biological activity and ensuring precise delivery into cells. This nanomaterial-based intracellular protein drug delivery system mitigates the rapid hydrolysis and unwarranted diffusion of proteins, thereby minimizing potential side effects and circumventing the limitations inherent in traditional techniques like electroporation. This review examines established protein drug delivery systems, including those based on polymers, liposomes, and protein nanoparticles. We delve into the operational principles and transport mechanisms of nanocarriers, discussing the various considerations essential for designing cutting-edge delivery platforms. Additionally, we investigate innovative designs and applications of traditional cytosolic protein delivery systems in medical research and clinical practice, particularly in areas like tumor treatment, gene editing and fluorescence imaging. This review sheds light on the current restrictions of protein delivery systems and anticipates future research avenues, aiming to foster the continued advancement in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552240PMC
http://dx.doi.org/10.1186/s12951-024-02969-5DOI Listing

Publication Analysis

Top Keywords

protein drugs
12
delivery systems
12
protein
8
protein drug
8
drug delivery
8
protein delivery
8
delivery
7
nanocarriers intracellular
4
intracellular delivery
4
proteins
4

Similar Publications