Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The exocyst is an octameric protein complex that acts as a tether for GOLGI-derived vesicles at the plasma membrane during exocytosis. It is involved in membrane expansion during axonal outgrowth. Exo70 is a major subunit of the exocyst complex and is controlled by TC10, a Rho family GTPase. How TC10 affects the dynamics of Exo70 at the plasma membrane is not well understood. There is also evidence that TC10 controls Exo70 dynamics differently in nonpolar cells and axons. To address this, we used super-resolution microscopy to study the spatially resolved effects of TC10 on Exo70 dynamics in HeLa cells and the growth cone of cortical and hippocampal neurons. We generated single-particle localization and trajectory maps and extracted mean square displacements, diffusion coefficients, and alpha coefficients to characterize Exo70 diffusion. We found that the diffusivity of Exo70 was different in nonpolar cells and the growth cone of neurons. TC10 stimulated the mobility of Exo70 in HeLa cells but decreased the diffusion of Exo70 in the growth cone of cortical neurons. In contrast to cortical neurons, TC10 overexpression did not affect the mobility of Exo70 in the axonal growth cone of hippocampal neurons. These data suggest that mainly exocyst tethering in cortical neurons was under the control of TC10.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617994 | PMC |
http://dx.doi.org/10.1016/j.bpr.2024.100186 | DOI Listing |