A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Novel Hybrid XAI Solution for Autonomous Vehicles: Real-Time Interpretability Through LIME-SHAP Integration. | LitMetric

A Novel Hybrid XAI Solution for Autonomous Vehicles: Real-Time Interpretability Through LIME-SHAP Integration.

Sensors (Basel)

Department of Artificial Intelligence and Robotics, Sejong University, Seoul 05006, Republic of Korea.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapid advancement in self-driving and autonomous vehicles (AVs) integrated with artificial intelligence (AI) technology demands not only precision but also output transparency. In this paper, we propose a novel hybrid explainable AI (XAI) framework that combines local interpretable model-agnostic explanations (LIME) and Shapley additive explanations (SHAP). Our framework combines the precision and globality of SHAP and low computational requirements of LIME, creating a balanced approach for onboard deployment with enhanced transparency. We evaluate the proposed framework on three different state-of-the-art models: ResNet-18, ResNet-50, and SegNet-50 on the KITTI dataset. The results demonstrate that our hybrid approach consistently outperforms traditional approaches by achieving a fidelity rate of more than 85%, interpretability factor of more than 80%, and consistency of more than 70%, surpassing the conventional methods. Furthermore, the inference time of our proposed framework with ResNet-18 was 0.28 s; for ResNet-50, it was 0.571 s; and that for SegNet was 3.889 s with XAI layers. This is optimal for onboard computations and deployment. This research establishes a strong foundation for the deployment of XAI in safety-critical AV with balanced tradeoffs for real-time decision-making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548085PMC
http://dx.doi.org/10.3390/s24216776DOI Listing

Publication Analysis

Top Keywords

novel hybrid
8
autonomous vehicles
8
framework combines
8
proposed framework
8
xai
4
hybrid xai
4
xai solution
4
solution autonomous
4
vehicles real-time
4
real-time interpretability
4

Similar Publications