Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Although primarily studied in relation to photorespiration, serine metabolism in chloroplasts may play a key role in plant CO fertilization responses by linking CO assimilation with growth. Here, we show that the phosphorylated serine pathway is part of a 'photosynthetic C pathway' and demonstrate its high activity in foliage of a C tree where it rapidly integrates photosynthesis and C metabolism contributing to new biomass via methyl transfer reactions, imparting a large natural C-depleted signature. Using CO-labelling, we show that leaf serine, the S-methyl group of leaf methionine, pectin methyl esters, and the associated methanol released during cell wall expansion during growth, are directly produced from photosynthetically-linked C metabolism, within minutes of light exposure. We speculate that the photosynthetic C pathway is highly conserved across the photosynthetic tree of life, is responsible for synthesis of the greenhouse gas methane, and may have evolved with oxygenic photosynthesis by providing a mechanism of directly linking carbon and ammonia assimilation with growth. Although the rise in atmospheric CO inhibits major metabolic pathways like photorespiration, our results suggest that the photosynthetic C pathway may accelerate and represents a missing link between enhanced photosynthesis and plant growth rates during CO fertilization under a changing climate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549359 | PMC |
http://dx.doi.org/10.1038/s42003-024-07142-0 | DOI Listing |