Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Essential oils (EOs) are reported to be natural pesticides, but their use to protect crops is very limited due to EOs' high instability and great volatility. Nanovectors represent a very smart alternative, and in this study, EOs from (AEO) and (SEO) were formulated into microemulsions and tested against . The EOs were extracted by steam distillation and analyzed by GC-MS. The main constituents of AEO were camphor, artemisia ketone, and 1,8-cineole; the main constituents of SEO were 1,8-cineole, camphor, α-pinene, and β-pinene. Artemisia ketone and 1,8-cineole were used to calculate the recovery and chemical stability of the microemulsions. The microemulsions were loaded with 10 mg/mL of EOs, and the recoveries were 99.8% and 99.6% for AEO and SEO, respectively. The sizes of the lipid phases were 255.3 ± 0.6 nm and 323.7 ± 2.3 nm for the AEO and SEO microemulsions, respectively. Activity against was tested using amphotericin B as the positive control. was very susceptible to both EOs. When loaded in the microemulsions, AEO and SEO remained very active at a dose of 1.4 and 1.2 mg, with a 99.99% reduction of . The findings suggest AEO and SEO microemulsions are suitable carriers for the protection of crops against .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547850 | PMC |
http://dx.doi.org/10.3390/nano14211715 | DOI Listing |