Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: Neuropathic pain (NP) affects countless people worldwide; however, few effective treatments are currently available. Histone deacetylases (HDACs) participate in epigenetic modifications in neuropathy-induced nociceptive sensitization. Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter that can inhibit NP. The present study aimed to examine the role of spinal HDAC and its isoforms in neuropathy.
Methods: Male Wistar Rat with chronic constriction injury (CCI)-induced peripheral neuropathy and HDAC inhibitor, panobinostat, was administrated intrathecally. We performed quantitative real-time polymerase chain reaction (RT-qPCR), western blot, and immunohistochemical analysis of lumbar spinal cord dorsal horn and nociceptive behaviors (thermal hyperalgesia and mechanical allodynia) measurements.
Results: Herein, RT-qPCR analysis revealed that spinal , , and were upregulated in CCI rats. Western blotting and immunofluorescence staining further confirmed that HDAC3, HDAC4, and HDAC6 were significantly upregulated, whereas GABA and its synthesis key enzyme glutamic acid decarboxylase (GAD) 65 were dramatically downregulated. Intrathecal panobinostat attenuated nociceptive behavior and restored the downregulated spinal GAD65 and GABA expression in CCI rats.
Conclusions: HDAC upregulation might induce nociception through GAD65 and GABA inhibition in CCI-induced neuropathy. These findings strongly suggest that HDACs negatively regulate inhibitory neurotransmitters, constituting a potential therapeutic strategy for an epigenetic approach to manage NP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543203 | PMC |
http://dx.doi.org/10.1097/PR9.0000000000001209 | DOI Listing |