Learning ballet technique modulates the stretch reflex in students with cerebral palsy: case series.

BMC Neurosci

School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, 3654 Prom Sir-William-Osler Street, Montreal, QC, H3G 1Y5, Canada.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Cerebral palsy (CP) is considered the most prevalent developmental motor disorder in children. There is a need for training programs that enhance motor abilities and normalize function from an early age. Previous studies report improved motor outcomes in dance interventions for CP. Investigating the neurophysiological mechanisms underlying such improvements is necessary for efficient and safe intervention design. This study reports changes in stretch reflex responses as the primary neurophysiological motor outcome of a targeted ballet class intervention.

Results: A case series of participants with mixed spastic and dyskinetic CP (n = 4, mean age = 12.5 years, SD = 6.9S years, three female, one male) who learned ballet technique in a course of one-hour classes twice per week for six weeks is presented. Changes in stretch reflex responses and in clinical motor tests as secondary outcomes were observed after the course and at one-month follow-up. Quantitative measures of elbow or ankle stretch reflex were obtained using electromyography and electrogoniometry. The joint angle of the stretch reflex onset varied across velocities of stretch, and its variability decreased after the intervention. Within-subject tests of the central tendency of stretch reflex angle coefficients of variation and frequency distribution demonstrated significant changes (p-values < 0.05). Secondary outcomes included the Quality of Upper Extremity Skills Test (QUEST), Pediatric Balance Scale (PBS), Modified Tardieu Scale (MTS), Dyskinesia Impairment Scale (DIS), and Selective Control Assessment of the Lower Extremity (SCALE). All the participants demonstrated improvements larger than the minimal clinical important difference (MCID) or the smallest detectable difference (SDD), as applicable.

Conclusions: Evidence of changes in the stretch reflex responses in these four cases of mixed CP was observed. The observed variability in the stretch reflex responses may be due to the dyskinetic component of the mixed CP presentations. More studies with a larger sample size and longer duration of learning and practice of ballet technique are necessary to establish the extent of possible modulation and adaptation of the stretch reflex response as a neurophysiological basis for observed improvements in clinical measures.

Trial Registration: This study was registered in the Clinical Trials Protocol Registration and Results System (NCT04237506, January 17, 2020).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539840PMC
http://dx.doi.org/10.1186/s12868-024-00873-0DOI Listing

Publication Analysis

Top Keywords

stretch reflex
24
ballet technique
8
cerebral palsy
8
case series
8
changes stretch
8
reflex responses
8
stretch
7
reflex
6
motor
5
learning ballet
4

Similar Publications

Within a year after a spinal cord injury (SCI), 75% of individuals develop spasticity. While normal movement relies on the ability to adjust reflexes appropriately, and on reciprocal inhibition of antagonistic muscles, spastic individuals display hyperactive spinal reflexes and involuntary muscle co-contractions. Current anti-spastic medications can suppress uncontrolled movements, but by acting on GABAergic signalling, these medications lead to severe side-effects and weakened muscle force, making them incompatible with activity-based therapies.

View Article and Find Full Text PDF

Proprioceptive group Ia afferents detect muscle stretch to guide effortless and purposeful movement and make monosynaptic connections with spinal α-motor neurons to mediate reflexes, such as the stretch reflex. It is thought that proprioceptive Ia afferents target motor neurons of the same spinal segment; yet, how this specificity, if any, is established during early development is unknown. Using spinal cord electrophysiology preparations from neonatal mice of both sexes, we identified a developmental period during which proprioceptive la afferents evoke both segmental and intersegmental responses at monosynaptic latencies.

View Article and Find Full Text PDF

During drop landings, shortly after ground contact, spinal excitability is decreased. This decrease, as measured by soleus H-reflex, has been presumed, but not proven, to originate from presynaptic inhibition, facilitated by the descending drive from supraspinal centers. Therefore, the aim of this study was to examine presynaptic inhibition during the flight and landing phases of drop landings.

View Article and Find Full Text PDF

Stretching-induced impairments of muscle performance are attributed to neural adaptations and mechanical changes. Inhibition of muscle spindle sensitivity appears to have long-lasting effects after stretching. However, whether a dose-response relationship exists between stretching duration and muscle spindle sensitivity remains unclear.

View Article and Find Full Text PDF

Spasticity is a recognized motor dysfunction that frequently arises following a stroke and significantly impacts the quality of life of affected patients. It is characterized by involuntary muscle activation resulting from overexcitation of the stretch reflex. Currently, therapeutic options for post-stroke spasticity are limited, and the underlying pathological mechanisms remain inadequately understood.

View Article and Find Full Text PDF