98%
921
2 minutes
20
The dynamic nature of cellular microenvironments, regulated by the viscoelasticity and enzymatic cleavage of the extracellular matrix, remains challenging to emulate in engineered synthetic biomaterials. To address this, a novel platform of cell-instructive hydrogels is introduced, composed of two concurrently forming interpenetrating polymer networks (IPNs). These IPNs consist of the same basic building blocks - four-armed poly(ethylene glycol) and the sulfated glycosaminoglycan (sGAG) heparin - are cross-linked through either chemical or physical interactions, allowing for precise and selective tuning of the hydrogel's stiffness, viscoelasticity, and proteolytic cleavability. The studies of the individual and combined effects of these parameters on stem cell behavior revealed that human mesenchymal stem cells exhibited increased spreading and Yes-associated protein transcriptional activity in more viscoelastic and cleavable sGAG-IPN hydrogels. Furthermore, human induced pluripotent stem cell (iPSC) cysts displayed enhanced lumen formation, growth, and pluripotency maintenance when cultured in sGAG-IPN hydrogels with higher viscoelasticity. Inhibition studies emphasized the pivotal roles of actin dynamics and matrix metalloproteinase activity in iPSC cyst morphology, which varied with the viscoelastic properties of the hydrogels. Thus, the introduced sGAG-IPN hydrogel platform offers a powerful methodology for exogenous stem cell fate control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973941 | PMC |
http://dx.doi.org/10.1002/adhm.202402656 | DOI Listing |
Haematologica
September 2025
University Hospital Heidelberg, Heidelberg.
Not available.
View Article and Find Full Text PDFHaematologica
September 2025
Division of Medical Oncology, University Hospital Basel, Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel.
We previously used a disease-specific B cell receptor (BCR) point mutation (IGLV3-21R110) for selective targeting of a high-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. Since CLL is a disease of the elderly and a significant fraction of patients is not able to physically tolerate CAR T cell treatment, we explored bispecific antibodies as an alternative for precision targeting of this tumor mutation. Heterodimeric IgG1-based antibodies consisting of a fragment crystallizable region (Fc) attached to both an anti-IGLV3-21R110 Fab and an anti-CD3 (UCHT1) single chain variable fragment (R110-bsAb) selectively killed cell lines engineered to express high levels of the neoepitope as well as primary CLL cells using healthy donor and CLL patient-derived T cells as effectors.
View Article and Find Full Text PDFHaematologica
September 2025
Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan; Division of Hematology, Department of Medicine, Jichi Medical University, Shimotsuke.
Patient age might influence donor selection priorities in allogeneic hematopoietic stem cell transplantation (allo-HCT), due to the differences in donor age, organ function, and resistance to graft-versus-host disease between younger and older patients. We compared the transplant outcomes among human leukocyte antigen (HLA)-matched related donors (M-RDs, n=4,106), HLA 1-antigen-mismatched related donors (1MM-RDs, n=592), HLA 2-3-antigen-mismatched related donors (23MM-RDs, n=882), HLA-matched unrelated donors (M-UDs, n=3,927), HLA 1-locus-mismatched unrelated donors (1MM-UDs, n=2,474), and unrelated cord blood units (U-CBs, n=5,867) between patients aged.
View Article and Find Full Text PDFJ Cell Sci
September 2025
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
The microtubule motor dynein-2 is responsible for retrograde intraflagellar transport (IFT), a process critical for cilia assembly and cilium-dependent signaling. Mutations in genes encoding dynein-2 subunits interfere with ciliogenesis and are among the most frequent causes of skeletal ciliopathies. Despite its importance, little is known regarding dynein-2 assembly and regulation.
View Article and Find Full Text PDFLiver Int
October 2025
Division of Gastroenterology, Acireale Hospital, Azienda Sanitaria Provinciale di Catania, Catania, Italy.
Background And Aims: Gut-liver axis has been implicated in the pathophysiology of cirrhosis due to metabolic dysfunction-associated steatotic liver disease (MASLD), an in vitro model for studying epithelial gut dysfunction in MASLD is lacking. In this study, we aimed to characterise intestinal organoids derived from subjects with MASLD.
Materials And Methods: Intestinal organoids were obtained from duodenal samples of individuals with non-fibrotic MASLD and with MASLD-cirrhosis.