Tuning Electron-Transfer Driving Force in Photosynthetic Special Pair Models.

Chemistry

Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Visible-light excitation of a family of bimetallic ruthenium polypyridines with the formula [Ru(tpy)(bpy)(-CN)Ru(py)L] (RuRuL), where L=Cl, NCS, DMAP and ACN, was used to prepare photoinduced mixed-valence (PI-MV) MLCT states as models of the photosynthetic reaction center. Ultrafast transient absorption spectroscopy allowed to monitor photoinduced IVCT bands between 6000 and 11000 cm. Mulliken spin densities resulting from DFT and (TD)DFT computations revealed the modulation of the charge density distribution depending on the ligand substitution pattern. Results are consistent with PI-MV systems ranging from non-degenerate Class II to degenerate Class III or II/III, with electronic couplings between 1000 and 3500 cm. These findings guide the control electron localization-delocalization in charge-transfer/charge-separated excited states, like those involved in the photosynthetic reaction center.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724256PMC
http://dx.doi.org/10.1002/chem.202402700DOI Listing

Publication Analysis

Top Keywords

photosynthetic reaction
8
reaction center
8
tuning electron-transfer
4
electron-transfer driving
4
driving force
4
force photosynthetic
4
photosynthetic special
4
special pair
4
pair models
4
models visible-light
4

Similar Publications

Dual pathways of photosynthetic inhibition by nanoplastics: Light reaction blockade in soybean and carbon fixation enzyme suppression in corn.

Plant Physiol Biochem

September 2025

Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Center for Ecological Public Health Security of Ye

Nanoplastics (NPs) have raised increasing attention due to their potential environmental risks to terrestrial vegetation and food security. However, for the plants with various photosynthetic pathways, the differences in their photosynthetic response and related mechanisms upon NPs exposure are still unclear. Here, the photosynthetic responses of typical soybean and corn plants under polystyrene NPs (PSNPs) exposure were systematically compared for the first time.

View Article and Find Full Text PDF

A practical guide to long-term field PAM chlorophyll fluorescence measurements: setup, installation, data processing with R package 'LongTermPAM' and interpretation.

Photosynth Res

September 2025

Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, 00014, Finland.

Pulse-amplitude modulated (PAM) chlorophyll fluorescence (ChlF) measurements provide a non-invasive method to study the regulation of the light reactions of photosynthesis in situ. PAM ChlF contributes also to the advancement of the interpretation of long-term observations of remotely sensed solar induced fluorescence by revealing the mechanistic connection between ChlF and photosynthetic function. However, long-term field PAM ChlF measurements remain uncommon due to challenges associated with the outdoor environment, instrument installation and maintenance, or data processing and interpretation.

View Article and Find Full Text PDF

Light serves as a crucial environmental signal for plants besides providing energy for photosynthesis. Photomorphogenesis, light-induced plant developmental responses, involves photoreceptors perceiving light signals to initiate signaling cascades with downstream transcriptional networks. Moreover, light is also absorbed by photopigments to drive photosynthetic light reactions, providing energy for growth and metabolism.

View Article and Find Full Text PDF

To investigate the photosynthetic responses of needles with different ages (current-year and annual-year) in to sunflecks along the vertical gradient of canopy, we conducted an experiment at the Changbai Mountain Forest Ecosystem Positioning Station utilizing a canopy tower crane platform. We selected current-year and annual-year needles from the upper (mean height: 23.26 m), middle (16.

View Article and Find Full Text PDF

Photosynthetic efficiency (PE) is key to evaluating phototrophic organisms in biotechnological applications. However, current methods offer limited, indirect insights with poor time resolution. To address this, photo-calorespirometry (Photo-CR) was developed, a novel, non-invasive technique for real-time, direct quantification of photosynthetic energy conversion.

View Article and Find Full Text PDF