Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The CA1 region of the hippocampus is one of the most studied regions of the rodent brain, thought to play an important role in cognitive functions such as memory and spatial navigation. Despite a wealth of experimental data on its structure and function, it has been challenging to integrate information obtained from diverse experimental approaches. To address this challenge, we present a community-based, full-scale in silico model of the rat CA1 that integrates a broad range of experimental data, from synapse to network, including the reconstruction of its principal afferents, the Schaffer collaterals, and a model of the effects that acetylcholine has on the system. We tested and validated each model component and the final network model, and made input data, assumptions, and strategies explicit and transparent. The unique flexibility of the model allows scientists to potentially address a range of scientific questions. In this article, we describe the methods used to set up simulations to reproduce in vitro and in vivo experiments. Among several applications in the article, we focus on theta rhythm, a prominent hippocampal oscillation associated with various behavioral correlates and use our computer model to reproduce experimental findings. Finally, we make data, code, and model available through the hippocampushub.eu portal, which also provides an extensive set of analyses of the model and a user-friendly interface to facilitate adoption and usage. This community-based model represents a valuable tool for integrating diverse experimental data and provides a foundation for further research into the complex workings of the hippocampal CA1 region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537418PMC
http://dx.doi.org/10.1371/journal.pbio.3002861DOI Listing

Publication Analysis

Top Keywords

ca1 region
12
experimental data
12
model
10
model rat
8
diverse experimental
8
experimental
5
data
5
community-based reconstruction
4
reconstruction simulation
4
simulation full-scale
4

Similar Publications

Igf2 modulates behavioral and hippocampal changes induced by chronic cocaine exposure during adolescence in mice.

Pharmacol Biochem Behav

September 2025

Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga (UMA), Málaga, 29010, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain. Electronic address:

Adolescence is a period of heightened neuroplasticity and vulnerability to environmental insults, including drug exposure. In this study, we investigated the short- and long-term behavioral effects, as well as the long-term hippocampal effects, of chronic cocaine administration during adolescence, along with the potential neuroprotective role of insulin-like growth factor 2 (IGF2) in male C57BL/6J mice. Over 21 days, mice received daily intraperitoneal injections of saline, cocaine, IGF2, or a combination of cocaine and IGF2.

View Article and Find Full Text PDF

Aberrant hippocampal subregional network associated with episodic memory decline in amnestic mild cognitive impairment.

Asian J Psychiatr

September 2025

National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Traditional Chinese Medicine Re

Background: Amnestic mild cognitive impairment (aMCI) is characterized by marked episodic memory decline. The hippocampus is essential for episodic memory, and integration of information within its subregions is central to this process. This study examined how alterations in hippocampal subregional network relate to episodic memory impairment in aMCI.

View Article and Find Full Text PDF

Excitatory glycine receptors control ventral hippocampus synaptic plasticity and anxiety-related behaviors.

Proc Natl Acad Sci U S A

September 2025

Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.

Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.

View Article and Find Full Text PDF

Photostimulation of locus coeruleus CA1 catecholaminergic terminals reversed Spatial memory impairment in an alzheimer's disease mouse model.

Psychopharmacology (Berl)

September 2025

División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico.

Rationale: One of the earliest changes associated with Alzheimer's disease (AD) is the loss of catecholaminergic terminals in the cortex and hippocampus originating from the Locus Coeruleus (LC). This decline leads to reduced catecholaminergic neurotransmitters in the hippocampus, affecting synaptic plasticity and spatial memory. However, it is unclear whether restoring catecholaminergic transmission in the terminals from the LC may alleviate the spatial memory deficits associated with AD.

View Article and Find Full Text PDF

Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.

View Article and Find Full Text PDF