98%
921
2 minutes
20
Nitrogen (N) is the most essential element for growth, development, and grain yield determination in crops. However, excessive nitrogen application can result in environmental pollution and greenhouse gas emissions that contribute to climate change. In this study, we used 158 rice genetic resources to evaluate the relationships between the soil and plant analysis development (SPAD) value and grain yield (GY) and its components. The SPAD value ranged between 30.5 and 55.8, with a mean of 41.7 ± 5.3, under normal nitrogen conditions (NN, 9 kg/10a), and between 27.5 and 52.3, with a mean of 38.6 ± 4.8, under low nitrogen conditions (LN, 4.5 kg/10a). Under NN conditions, the SPAD values were in the following order: (43.5 ± 5.8), -type (41.7 ± 2.5), others (41.7 ± 5.2), and (38.3 ± 3.8). By contrast, under LN conditions, the SPAD values were in the following order: -type (40.4 ± 2.1), others (40.1 ± 4.5), (39.6 ± 5.2), and (35.6 ± 3.9). The 158 genetic resources showed no correlation between SPAD and yield. Therefore, the low-decrease rate (LDR) and high-decrease rate (HDR) SPAD groups were selected to reanalyze the relationships between the surveyed traits. The SPAD values were positively correlated with 1000-grain weight (TGW) for both LDR and HDR groups (NN: 0.63, LN: 0.53), However, SPAD and GY were positively correlated only in the LDR group. For TGW, the coefficient of determination ( ) was 20% and 13% under NN and LN conditions, respectively. For GY, values of 32% and 52% were observed under NN and LN conditions, respectively. Genetic resources with higher SPAD values in the LDR group exhibited the highest yield (NN: 1.19 kg/m, LN: 1.04 kg/m) under both NN and LN conditions. In conclusion, we selected 10 genetic resources that exhibited higher GY under both NN and LN conditions with minimal yield reductions. These genetic resources represent valuable breeding materials for nitrogen deficiency adaptation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533161 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1437371 | DOI Listing |
Crit Rev Food Sci Nutr
September 2025
Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.
View Article and Find Full Text PDFPlant Dis
September 2025
Cornell University, Plant Pathology & Plant-Microbe Biology, Geneva, New York, United States;
Septoria leaf spot, caused by the fungal pathogen , is a common disease of field-grown hemp ( L.). The development of disease-resistant cultivars presents a promising strategy for managing this disease.
View Article and Find Full Text PDFJ Virol
September 2025
Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
Arthropod-borne viruses (arboviruses) pose a major threat to global public health, impacting both human and animal health. Genomic characterization is important for arboviruses because it allows for an understanding of their evolution and improves timely outbreak and epidemic response. In this study, we used high-throughput sequencing and computational analyses to characterize the genomes and evolution of 46 previously unsequenced or partially sequenced arbovirus isolates collected across 23 countries between 1954 and 1984.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China.
Unlabelled: Lactobacilli, recognized as beneficial bacteria within the human body, are celebrated for their multifaceted probiotic functions, including the regulation of intestinal flora, enhancement of body immunity, and promotion of nutrient absorption. This study comprehensively analyzed the genotypic and phenotypic characteristics of () strains isolated from the intestines of healthy chicks and assessed their potential as probiotics. The assembled genome consists of 29,521,986 bp, and a total of 1,771 coding sequences (CDSs) were predicted.
View Article and Find Full Text PDF