A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

EU-Net: Automatic U-Net neural architecture search with differential evolutionary algorithm for medical image segmentation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Medical images are crucial in clinical practice, providing essential information for patient assessment and treatment planning. However, manual extraction of information from images is both time-consuming and prone to errors. The emergence of U-Net addresses this challenge by automating the segmentation of anatomical structures and pathological lesions in medical images, thereby significantly enhancing the accuracy of image interpretation and diagnosis. However, the performance of U-Net largely depends on its encoder-decoder structure, which requires researchers with knowledge of neural network architecture design and an in-depth understanding of medical images. In this paper, we propose an automatic U-Net Neural Architecture Search (NAS) algorithm using the differential evolutionary (DE) algorithm, named EU-Net, to segment critical information in medical images to assist physicians in diagnosis. Specifically, by presenting the variable-length strategy, the proposed EU-Net algorithm can sufficiently and automatically search for the neural network architecture without expertise. Moreover, the utilization of crossover, mutation, and selection strategies of DE takes account of the trade-off between exploration and exploitation in the search space. Finally, in the encoding and decoding phases of the proposed algorithm, different block-based and layer-based structures are introduced for architectural optimization. The proposed EU-Net algorithm is validated on two widely used medical datasets, i.e., CHAOS and BUSI, for image segmentation tasks. Extensive experimental results show that the proposed EU-Net algorithm outperforms the chosen peer competitors in both two datasets. In particular, compared to the original U-Net, our proposed method improves the metric mIou by at least 6%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107579DOI Listing

Publication Analysis

Top Keywords

medical images
16
proposed eu-net
12
eu-net algorithm
12
automatic u-net
8
u-net neural
8
neural architecture
8
architecture search
8
differential evolutionary
8
evolutionary algorithm
8
image segmentation
8

Similar Publications