Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Upconverting particles (UCPs), renowned for their capability to convert infrared to visible light, serve as invaluable imaging probes. Furthermore, their responsiveness to diverse external stimuli holds promise for leveraging UCPs as remote multiparametric sensors, capable of characterizing medium properties in a single assessment. However, the utility of UCPs in multiparametric sensing is impeded by crosstalk, wherein distinct external stimuli induce identical alterations in UCP luminescence, hindering accurate interpretation, and yielding erroneous outputs. Overcoming crosstalk requires alternative strategies in upconverting luminescence analysis. In this study, it is shown how a single spinning NaYF:Er, Yb upconverting particle enables simultaneous and independent readings of temperature and viscosity. This is achieved by decoupling thermal and rehological measurements-employing the luminescence of thermally-coupled energy levels of Er ions for thermal sensing, while leveraging the polarization of luminescence from non-thermally coupled levels of Er ions to determine viscosity. Through simple proof-of-concept experiments, the study validates the capability of a single spinning UCP to perform unbiased, simultaneous temperature, and viscosity sensing, thereby opening new avenues for advanced sensing in microenvironments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020337 | PMC |
http://dx.doi.org/10.1002/smtd.202400718 | DOI Listing |