A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Isotopic labeling of nanoparticles for the evaluation of their environmental fate in mesocosm experiments. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mesocosm systems simulating floodplain areas are essential for the understanding of the environmental fate and effects of engineered nanoparticles (ENPs). In such mesocosm studies, the quantification of different types of nanoparticles coexisting in natural systems and containing the same element is often challenging. Such coexistence is expected e.g., for ENPs simultaneously released into the environmental systems. Despite the relevance of the coexistence, little is known about combined behavior and effects of ENPs in the environment. In this study, we developed a method for the quantification and differentiation of silver nanoparticles enriched by Ag isotope (Ag-NPs) and sulfidized silver nanoparticles with natural isotopic distribution (S-Ag-NPs) in water, soil, and sediment and applied it to evaluate the environmental fate of these nanoparticles introduced simultaneously together with gold (Au-NPs) and titanium dioxide (TiO-NPs) nanoparticles into mesocosms simulating an aquatic-terrestrial transition zone. High nanoparticle recoveries determined in water, sand, and soil spiked with nanoparticle mixtures indicate that the application of isotopically enriched ENPs will allow their differentiation from other nanoparticles containing the same element in environmental compartments even at the concentrations in the range of natural background. The co-accumulation of Ag-NPs, S-Ag-NPs, and Au-NPs in the top layer of sediment and soil and in biofilms observed in mesocosm studies suggests that these compartments can act as effective sinks for these ENPs. We suggest that the hetero-aggregation between different co-occurring ENPs and their high affinity to biota are major mechanisms controlling their fate in the aquatic-terrestrial transition zone. A high co-enrichment of Ag-NPs, S-Ag-NPs, Au-NPs, and TiO-NPs in/on algae, biofilms, leaves, and amphipods suggests an enhanced risk of biomagnification. The findings of this study will contribute to a better understanding of the fate of ENPs and their combined effects in environmental compartments, where the simultaneous presence of diverse nanoparticles is expected.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.177264DOI Listing

Publication Analysis

Top Keywords

environmental fate
12
nanoparticles
9
mesocosm studies
8
silver nanoparticles
8
aquatic-terrestrial transition
8
transition zone
8
zone high
8
environmental compartments
8
ag-nps s-ag-nps
8
s-ag-nps au-nps
8

Similar Publications