Severity: Warning
Message: opendir(/var/lib/php/sessions): Failed to open directory: Permission denied
Filename: drivers/Session_files_driver.php
Line Number: 365
Backtrace:
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Methylsuccinate is a branched-chain, 5-carbon (C5) dicarboxylate that can be generated from the O-independent activation of methane via fumarate addition. However, no established metabolic pathway enables growth and product synthesis from methylsuccinate. Here, we report a synthetic pathway that converts methylsuccinate into two precursor metabolites: pyruvate and acetyl-CoA. The pathway was constructed through rational design and validated both in vitro and in vivo using E. coli as the host. Subsequently, growth on methylsuccinate as the sole carbon source was achieved using two parallel strategies: adaptive laboratory evolution and enzyme mining. Through the latter approach, we identified a heterologous electron transfer pathway mediated by previously uncharacterized enzymes and integrated into E. coli enabling the conversion of methylsuccinyl-CoA to mesaconyl-C4-CoA. The engineered strain demonstrated efficient growth on various C5 dicarboxylates including methylsuccinate, mesaconate, and itaconate, with a specific growth rate of 0.11 h on methylsuccinate. This study represents an important step toward achieving synthetic methanotrophy, as the engineered strain can serve as a platform for screening potential methane activation enzymes and ultimately as a production chassis for the bioconversion of methane into various value-added products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131700 | DOI Listing |
Langmuir
September 2025
Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan, R.O.C.
Chemical absorption of carbon dioxide using monoethanolamine (MEA) is a well-established method for postcombustion CO capture. In this study, we aimed to integrate (1) the MEA-based CO capture with the regeneration of MEA using calcium-based mineralization, followed by (2) direct utilization of captured CO to form syngas via a calcium looping-based dry reforming of methane (CaL-DRM), an interfacial catalytic process. The results show that room-temperature CO capture-MEA regeneration was achievable by using calcium-based mineralization.
View Article and Find Full Text PDFWaste Manag
September 2025
Department of Earth and Environment Sciences, St. Francis Xavier University, Antigonish, Canada.
We measured emissions from ten landfills using mobile surveys and Surface Emission Monitoring (SEM) to determine what fraction of emissions can be identified by SEM surveys. SEM is commonly used for regulatory compliance and leak detection at specific locations. However, evolving regulations emphasize the need to manage methane emissions from the entire landfill site, and the suitability of SEM for this objective remains unclear.
View Article and Find Full Text PDFSci Total Environ
September 2025
Department of Animal Sciences and Aquatic Ecology, Ghent University, Gent, Belgium.
Wetlands play a crucial role in global greenhouse gas (GHG) dynamics, yet their response to climate change is not yet fully understood. Here, we investigate how increasing temperature and oxygen availability interact to regulate wetland GHG emissions through combined analysis of biogeochemical and functional gene measurements. We found distinct temperature-dependent shifts in carbon emission pathways, with CO emissions unexpectedly declining as temperature rose from 15 to 25 °C, while increasing consistently at higher temperatures (25-35 °C), reflecting a transition to more thermally-driven processes.
View Article and Find Full Text PDFAnaerobic methanotrophic archaea (ANME) are crucial to planetary carbon cycling. They oxidise methane in anoxic niches by transferring electrons to nitrate, metal oxides, or sulfate-reducing bacteria. No ANMEs have been isolated, hampering the biochemical investigation of anaerobic methane oxidation.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
Upgrading methane to value-added chemicals is significant but still challenging. Well-designed catalysts are required to activate methane. Extensive efforts have been dedicated to the catalytic conversion of methane over transition-metal-containing catalysts.
View Article and Find Full Text PDF