A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Classification of coronary artery disease severity based on SPECT MPI polarmap images and deep learning: A study on multi-vessel disease prediction. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Coronary artery disease (CAD) is a global health concern. Conventional single photon emission computed tomography myocardial perfusion imaging (SPECT MPI) is a noninvasive method for assessing the severity of CAD. However, it relies on manual classification by clinicians, which can lead to visual fatigue and potential errors. Deep learning techniques have displayed promising results in CAD diagnosis and prediction, providing efficient and accurate analysis of medical images.

Methods: In this study, we explore the application of deep learning methods for assessing the severity of CAD and identifying cases of multivessel disease (MVD). We utilized the EfficientNet-V2 model in combination with DeepSMOTE to evaluate CAD severity using SPECT MPI images.

Results: Utilizing a dataset consisting of 254 patients (176 with MVD and 78 with single-vessel disease [SVD]), our model achieved an accuracy rate of 84.31% and area under the receiver operating characteristic curve (AUC) value of 0.8714 in predicting cases of MVD. These results underline the promising potential of our approach in MVD prediction, offering valuable diagnostic insights and the prospect of reducing medical costs.

Conclusion: This study emphasizes the feasibility of employing deep learning techniques for predicting MVD based on SPECT MPI images. The integration of Efficient-Net-V2 and DeepSMOTE methods effectively evaluates CAD severity and distinguishes MVD from SVD. Our research presents a practical approach to the early prediction and diagnosis of MVD, ultimately leading to enhanced patient outcomes and reduced healthcare costs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526402PMC
http://dx.doi.org/10.1177/20552076241288430DOI Listing

Publication Analysis

Top Keywords

spect mpi
16
deep learning
16
coronary artery
8
artery disease
8
based spect
8
assessing severity
8
severity cad
8
learning techniques
8
cad severity
8
mvd
7

Similar Publications