Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transcription factor proteins bind to specific DNA promoter sequences and initiate gene transcription. In eukaryotes, most transcription factors contain intrinsically disordered activation domains (ADs) that regulate their transcriptional activity. Like other disordered protein regions, ADs do not have a fixed three-dimensional structure and instead exist in an ensemble of conformations. Disordered ensembles contain sequence-encoded structural preferences which are often linked to their function. We hypothesize this link exists between the structural preferences of disordered AD ensembles and their ability to induce gene expression. To test this, we used FRET microscopy to measure the ensemble dimensions of two activation domains, HIF-1α and CITED2, in live cells, and correlate this structural information with transcriptional activity. We find that point mutations that expanded the HIF-1α ensemble increased transcriptional activity, while those that compacted it reduced activity. Conversely, CITED2 showed no correlation between ensemble dimensions and activity. Our results reveal a sequence-dependent relationship between AD ensemble dimensions and their transcriptional activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527027PMC
http://dx.doi.org/10.1101/2024.10.19.619222DOI Listing

Publication Analysis

Top Keywords

transcriptional activity
16
ensemble dimensions
12
disordered activation
8
gene expression
8
activation domains
8
disordered ensembles
8
structural preferences
8
activity
6
ensemble
5
correlating disordered
4

Similar Publications

Ectomycorrhizal fungi (EMF) colonize roots to establish symbiotic associations with plants. Sporocarps of the EMF Tuber spp. are considered as a delicacy in numerous countries and is a kind of EMF of great economic and social importance.

View Article and Find Full Text PDF

Objectives: To investigate the antitumor effects of aucubin (AC) in non-small cell lung cancer (NSCLC) and uncover its plausible mechanism against lung cancer stem-like cells (LCSCs).

Methods: In vitro experiments included MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a reagent commonly used for cell viability assay) and colony formation assays to assess anti-proliferative effects on A549 and NCI-H1975 lung cancer cell lines, wound healing and Transwell invasion assays to evaluate inhibition of cell migration and invasion, tumorsphere-formation experiments to detect changes in NSCLC cell stemness, as well as Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses to measure the expression of LCSC markers (CD44, CD133, Oct4, and Nanog). In vivo experiments were conducted to observe the impact of AC on NSCLC metastasis and mouse survival rates.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hr after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity.

View Article and Find Full Text PDF

Unlabelled: Oropouche fever is a debilitating disease caused by Oropouche virus (OROV), an arthropod-borne member of the Peribunyaviridae family. Despite its public health significance, the molecular mechanisms driving OROV pathogenesis remain poorly understood. In other bunyaviruses, the nonstructural NSs protein encoded by the small (S) genome segment acts as a major virulence factor.

View Article and Find Full Text PDF