Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Oral squamous cell carcinomas typically arise from precancerous lesions such as leukoplakia and erythroplakia. These lesions exhibit a range of histological changes from hyperplasia to dysplasia and carcinoma in situ, during their transformation to malignancy. The molecular mechanisms driving this multistage transition remain incompletely understood. To bridge this knowledge gap, our current study utilizes label based comparative proteomics to compare protein expression profiles across different histopathological grades of leukoplakia, erythroplakia, and oral squamous cell carcinoma samples, aiming to elucidate the molecular changes underlying lesion evolution.

Methodology: An 8-plex iTRAQ proteomics of 4 biological replicates from 8 clinical phenotypes of leukoplakia and erythroplakia, with hyperplasia, mild dysplasia, moderate dysplasia; along with phenotypes of well differentiated squamous cell carcinoma and moderately differentiated squamous cell carcinoma was carried out using the Orbitrap Fusion Lumos mass spectrometer. Raw files were processed with Maxquant, and statistical analysis across groups was conducted using MetaboAnalyst. Statistical tools such as ANOVA, PLS-DA VIP scoring, and correlation analysis were employed to identify differentially expressed proteins that had a linear expression variation across phenotypes of hyperplasia to cancer. Validation was done using Bioinformatic tools such as ClueGO + Cluepedia plugin in Cytoscape to extract functional annotations from gene ontology and pathway databases.

Results And Discussion: A total of 2685 protein groups and 12,397 unique peptides were identified, and 61 proteins consistently exhibited valid reporter ion corrected intensities across all samples. Of these, 6 proteins showed linear varying expression across the analysed sample phenotypes. Collagen type VI alpha 2 chain (COL6A2), Fibrinogen β chain (FGB), and Vimentin (VIM) were found to have increased linear expression across pre-cancer phenotypes of leukoplakia to cancer, while Annexin A7 (ANXA7) was seen to be having a linear decreasing expression. Collagen type VI alpha 2 chain (COL6A2) and Annexin A2 (ANXA2) had increased linear expression across precancer phenotypes of erythroplakia to cancer. The mass spectrometry proteomics data have been deposited to the ProteomeXchanger Consortium via the PRIDE partner repository with the data set identifier PXD054190. These differentially expressed proteins mediate cancer progression mainly through extracellular exosome; collagen-containing extracellular matrix, hemostasis, platelet aggregation, and cell adhesion molecule binding.

Conclusion: Label-based proteomics is an ideal platform to study oral cancer progression. The differentially expressed proteins provide insights into the molecular mechanisms underlying the progression of oral premalignant lesions to malignant phenotypes. The study has translational value for early detection, risk stratification, and potential therapeutic targeting of oral premalignant lesions and in its prevention to malignant forms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525462PMC
http://dx.doi.org/10.1016/j.bbrep.2024.101842DOI Listing

Publication Analysis

Top Keywords

squamous cell
20
cell carcinoma
16
oral squamous
12
leukoplakia erythroplakia
12
differentially expressed
12
expressed proteins
12
linear expression
12
comparative proteomics
8
precancerous lesions
8
molecular mechanisms
8

Similar Publications

Background: Accurate evaluation of the invasion depth of superficial esophageal squamous cell carcinoma (SESCC) is crucial for optimal treatment. While magnifying endoscopy (ME) using the Japanese Esophageal Society (JES) classification is reported as the most accurate method to predict invasion depth, its efficacy has not been tested in the Western world. This study aims to evaluate the interobserver agreement of the JES classification for SESCC and its accuracy in estimating invasion depth in a Brazilian tertiary hospital.

View Article and Find Full Text PDF

Cell type-specific regulatory programs that drive type 1 diabetes (T1D) in the pancreas are poorly understood. Here, we performed single-nucleus multiomics and spatial transcriptomics in up to 32 nondiabetic (ND), autoantibody-positive (AAB), and T1D pancreas donors. Genomic profiles from 853,005 cells mapped to 12 pancreatic cell types, including multiple exocrine subtypes.

View Article and Find Full Text PDF

Hepatocyte apoptosis is a key feature of metabolic dysfunction-associated steatohepatitis (MASH), but the fate of apoptotic hepatocytes in MASH is poorly understood. Here, we explore the hypotheses that clearance of dead hepatocytes by liver macrophages (efferocytosis) is impaired in MASH because of low expression of the efferocytosis receptor T cell immunoglobulin and mucin domain containing 4 (TIM4; gene ) by MASH liver macrophages, which then drives liver fibrosis in MASH. We show that apoptotic hepatocytes accumulate in human and experimental MASH, using mice fed the fructose-palmitate-cholesterol (FPC) diet or the high-fat, choline-deficient amino acid-defined (HF-CDAA) diet.

View Article and Find Full Text PDF

Fanconi Anemia (FA) is a heritable syndrome characterized by DNA damage repair deficits, frequent malformations and a significantly elevated risk of bone marrow failure, leukemia, and mucosal head and neck squamous cell carcinomas (HNSCC). Hematopoietic stem cell gene therapy can prevent marrow failure and lower leukemia risk, but mucosal gene therapy to lower HNSCC risk remains untested. Major knowledge gaps include an incomplete understanding of how rapidly gene-corrected cellular lineages could spread through the oral epithelium, and which delivery parameters are critical for ensuring efficient gene correction.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) and reactive intermediates, such as methylglyoxal, are formed during thermal processing of foods and have been implicated in the pathogenesis of a series of chronic inflammatory diseases. AGEs are thought to directly interact with the intestinal epithelium upon ingestion of thermally processed foods, but their effects on intestinal epithelial cells are poorly understood. This study investigated transcriptomic changes in human intestinal epithelial FHs 74 Int cells after exposure to AGE-modified human serum proteins (AGE-HS), S100A12, a known RAGE ligand, and unmodified human serum proteins (HS).

View Article and Find Full Text PDF