A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development of a Flexible Produce Supply Chain Food Safety Risk Model: Comparing Tradeoffs Between Improved Process Controls and Additional Product Testing for Leafy Greens as a Test Case. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The produce industry needs a tool to evaluate food safety interventions and prioritize investments and future research. A model was developed in R for a generic produce supply chain and made accessible via Shiny. Microbial contamination events, increases, reductions, and testing can be modeled. The output for each lot was the risk of one, 300-gram sample testing positive, described by two industry-relevant risk metrics, the overall risk of a positive test (proxy for recall risk) and the number of lots with the highest risk (>1 in 10 chance) of testing positive (proxy for public health risk). A leafy green supply chain contaminated with Shiga-toxin-producing Escherichia coli was modeled with a mean of 1 pathogen cell per pound (µ = 1 CFU/lb or -2.65 Log(CFU/g)) under high (σ = 0.8 Log(CFU/g)) and low (σ = 0.2 Log(CFU/g)) variability. Baseline risk of a positive test in the low-variability scenario (1 in 20,000) was lower than for high-variability (1 in 4,500), showing rare high-level contamination drives risk. To evaluate tradeoffs, we modeled two well-studied, frequently used interventions: additional product testing (8 of 375-gram tests/lot) and improved process controls (additional -0.87 ± 0.32 Log(CFU/g) reduction). Improved process controls better-reduced recall risk (to 1 in 115,000 and 1 in 26,000 for low- and high-variability, respectively), compared to additional product testing (to 1 in 21,000 and 1 in 11,000 for low- and high-variability, respectively). For low variability contamination, no highest-risk lots existed. Under high variability contamination, both interventions removed all highest-risk lots (about 0.05% of total). Yet, additional product testing rejected more lower-risk lots (about 1% of total), suggesting meaningful food waste tradeoffs. This model evaluates tradeoffs between interventions using industry-relevant risk metrics to support decision-making and can be adapted to assess other commodities, process stages, and less-studied interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jfp.2024.100393DOI Listing

Publication Analysis

Top Keywords

additional product
16
product testing
16
supply chain
12
improved process
12
process controls
12
risk
11
produce supply
8
food safety
8
controls additional
8
testing positive
8

Similar Publications