A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A bioswitchable siRNA delivery system: RNAi therapy based on tetrahedral framework nucleic acids for bone defect repair. | LitMetric

A bioswitchable siRNA delivery system: RNAi therapy based on tetrahedral framework nucleic acids for bone defect repair.

Nanoscale

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Craniofacial bone defects, caused by trauma, congenital abnormalities, or various diseases, present a significant challenge in regenerative medicine. One approach to addressing this problem is the use of RNA interference (RNAi) technology with small interfering RNA (siRNA). CKIP-1 is a negative regulatory molecule for bone formation. However, direct applications of CKIP-1 siRNA for bone defects are still limited. The instability and poor cellular uptake ability of CKIP-1 siRNA restrict its clinical applications. A new drug delivery system is critically needed to enhance the effectiveness and potential applications of CKIP-1 siRNA. Tetrahedral framework nucleic acid (tFNA) is a promising drug delivery system due to its stability and transport abilities. In this study, we developed a bioswitchable siRNA delivery system (BiRDS) based on tFNA to carry CKIP-1 siRNA and examined its effect on bone defect repair. siRNA was successfully loaded into the tFNA core, forming BiRDS, which improved siRNA stability and cellular uptake. After entering cells, BiRDS exposed siRNA, enhancing CKIP-1 silencing efficiency. This system significantly promoted osteogenic differentiation and bone regeneration in rat mandibular bone defects, offering a new strategy for bone regeneration therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr04105dDOI Listing

Publication Analysis

Top Keywords

delivery system
16
ckip-1 sirna
16
bone defects
12
sirna
9
bioswitchable sirna
8
sirna delivery
8
tetrahedral framework
8
framework nucleic
8
bone
8
bone defect
8

Similar Publications