A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Rhizophagus intraradices mediated mitigation of arsenic toxicity in wheat involves differential distribution of arsenic in subcellular fractions and modulated expression of Phts and ABCCs. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biomagnification of arsenic in food chain through wheat consumption poses a serious threat to human health. Therefore, it is necessary to elucidate mechanism of arsenic tolerance and detoxification in wheat. The study aimed to unravel the strategies adopted by arbuscular mycorrhizal fungi to alleviate arsenic toxicity in wheat. To accomplish this, independent and interactive effects of arsenic and Rhizophagus intraradices were assessed. Colonization by R. intraradices resulted in lower expression of high-affinity phosphate transporters (Phts) in comparison with non-mycorrhizal (NM) plants, thereby lowering arsenic concentrations in mycorrhizal (M) plants. Additionally, the subcellular fractionation analysis indicated differential distribution of arsenic. In NM plants, arsenic accumulated primarily in cell wall and organelle fractions. Conversely, in M plants arsenic was more concentrated in the cell wall and vacuolar fractions. This was related to higher levels of hydroxyl and aldehyde groups in cell wall fraction of root along with increased expression of C-type ATP-binding cassette transporters in root and leaves. These factors enabled effective sequestration of arsenic in the cell wall and vacuoles of M plants, thereby reducing its toxicity. Furthermore, the proportion of inorganic arsenic was lower in M plant, as it transformed it into less toxic organic forms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136284DOI Listing

Publication Analysis

Top Keywords

cell wall
16
arsenic
12
rhizophagus intraradices
8
arsenic toxicity
8
toxicity wheat
8
differential distribution
8
distribution arsenic
8
plants arsenic
8
plants
5
intraradices mediated
4

Similar Publications