A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Wavelet and time-based cerebral autoregulation analysis using diffuse correlation spectroscopy on adults undergoing extracorporeal membrane oxygenation therapy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Adult patients who have suffered acute cardiac or pulmonary failure are increasingly being treated using extracorporeal membrane oxygenation (ECMO), a cardiopulmonary bypass technique. While ECMO has improved the long-term outcomes of these patients, neurological injuries can occur from underlying illness or ECMO itself. Cerebral autoregulation (CA) allows the brain to maintain steady perfusion during changes in systemic blood pressure. Dysfunctional CA is a marker of acute brain injury and can worsen neurologic damage. Monitoring CA using invasive modalities can be risky in ECMO patients due to the necessity of anticoagulation therapy. Diffuse correlation spectroscopy (DCS) measures cerebral blood flow continuously, noninvasively, at the bedside, and can monitor CA. In this study, we compare DCS-based markers of CA in veno-arterial ECMO patients with and without acute brain injury.

Methods: Adults undergoing ECMO were prospectively enrolled at a single tertiary hospital and underwent DCS and arterial blood pressure monitoring during ECMO. Neurologic injuries were identified using brain computerized tomography (CT) scans obtained in all patients. CA was calculated over a twenty-minute window via wavelet coherence analysis (WCA) over 0.05 Hz to 0.1 Hz and a Pearson correlation (DCSx) between cerebral blood flow measured by DCS and mean arterial pressure.

Results: Eleven ECMO patients who received CT neuroimaging were recruited. 5 (45%) patients were found to have neurologic injury. CA indices WCOH, the area under the curve of the WCA, were significantly higher for patients with neurological injuries compared to those without neurological injuries (right hemisphere p = 0.041, left hemisphere p = 0.041). %DCSx, percentage of time DCSx was above a threshold 0.4, were not significantly higher (right hemisphere p = 0.268, left hemisphere p = 0.073).

Conclusion: DCS can be used to detect differences in CA for ECMO patients with neurological injuries compared to uninjured patients using WCA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521301PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299752PLOS

Publication Analysis

Top Keywords

neurological injuries
16
ecmo patients
16
patients neurological
12
patients
10
ecmo
9
cerebral autoregulation
8
diffuse correlation
8
correlation spectroscopy
8
adults undergoing
8
extracorporeal membrane
8

Similar Publications