A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Degradation of norfloxacin by the synergistic effect of micro-nano bubbles and sodium hypochlorite: kinetics, influencing factors and pathways. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study thoroughly investigated the degradation of norfloxacin (NOR) under the influence of micro-nanobubbles (MNBs) and sodium hypochlorite (NaClO), focusing on their synergistic effects. The impact of various environmental factors, including NaClO concentration, pH, inorganic anions, and surfactants, on NOR degradation efficiency within the MNBs/NaClO system was systematically assessed. The basic properties of the MNBs/NaClO system and the degradation kinetics of NOR were explored. The degradation products and pathways of NOR were explored to reveal the degradation mechanism of antibiotics in the MNBs/NaClO system by employing density functional theory (DFT) and high-performance liquid chromatography-mass spectrometry (HPLC-MS). The redox potential of the MNBs/NaClO system exhibited significantly superior properties than the single system, with bubble sizes predominantly in the nanoscale. The degradation kinetics of NOR adhered to a pseudo-first-order reaction model, with optimal degradation occurring at a 0.025% NaClO volume concentration. Acidic conditions promoted the degradation of NOR, and alkaline conditions inhibited the degradation of NOR. Inorganic anions PO, HCO, and CO in the water matrix led to strong inhibition of NOR degradation. Cationic surfactants accelerated the degradation process of NOR, while anionic and nonionic surfactants had a consistent inhibitory effect on the degradation of NOR. Based on the degradation behavior, three potential pathways for NOR degradation were proposed: quinolone group transformation, defluorination reaction, piperazine ring cracking and quinolone ring decomposition. This research contributes a novel technical approach for addressing antibiotic pollution and offers a theoretical framework for understanding the fate of antibiotics in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4em00490fDOI Listing

Publication Analysis

Top Keywords

mnbs/naclo system
16
degradation
15
degradation norfloxacin
8
sodium hypochlorite
8
inorganic anions
8
degradation kinetics
8
system
5
norfloxacin synergistic
4
synergistic micro-nano
4
micro-nano bubbles
4

Similar Publications