Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Sutures are the most commonly used wound repair method after surgery. However, addressing delayed recovery and pain management remains a significant challenge. Here, microfibers are developed from microfluidic spinning with long-lasting analgesia capabilities for sutures. By using a solvent extraction manner, the polycaprolactone (PCL) microfibers encapsulated with ropivacaine (ROP), a well-known analgesic, can be continuously obtained from microfluidics. The intrinsic property of PCL and the advantage of microfluidic spinning technique impart the microfiber with highly controlled morphologies, mechanical strengths, as well as drug release. After exploring their biocompatibility both at in vitro and in vivo levels, the microfibers are directly applied to wound suture. The results demonstrate the lasting analgesic effect of the microfiber on mice with incision pain, highlighting its potential as promising suture for post-surgery treatments. It is anticipated that the multifunctional analgesic sutures produced through microfluidic spinning will pave the way for utilizing fibers as effective sutures in clinical incision wound treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202402420 | DOI Listing |