Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Computer simulations, which are performed at a single wavelength at a time, have been traditionally used to estimate the optical properties of tissues. The results of these simulations need to be interpolated. For a broadband estimation of tissue optical properties, the use of computer simulations becomes time consuming and computer demanding. When spectral measurements are available for a tissue, the use of the photon diffusion approximation can be done to perform simple and direct calculations to obtain the broadband spectra of some optical properties. The additional estimation of the reduced scattering coefficient at a small number of discrete wavelengths allows to perform further calculations to obtain the spectra of other optical properties. This study used spectral measurements from the heart muscle to explain the calculation pipeline to obtain a complete set of the spectral optical properties and to show its versatility for use with other tissues for various biophotonics applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.202400257DOI Listing

Publication Analysis

Top Keywords

optical properties
24
photon diffusion
8
diffusion approximation
8
tissue optical
8
properties computer
8
computer simulations
8
spectral measurements
8
spectra optical
8
optical
6
properties
6

Similar Publications

Magnon-phonon hybridization in ordered materials is a crucial phenomenon with significant implications for spintronics, magnonics, and quantum materials research. We present direct experimental evidence and theoretical insights into magnon-phonon coupling in Mn_{3}Ge, a kagome antiferromagnet with noncollinear spin order. Using inelastic x-ray scattering and ab initio modeling, we uncover strong hybridization between planar spin fluctuations and transverse optical phonons, resulting in a large hybridization gap of ∼2  meV.

View Article and Find Full Text PDF

On-Chip Emitter-Coupled Meta-Optics for Versatile Photon Sources.

Phys Rev Lett

August 2025

University of Southern Denmark, Centre for Nano Optics, Campusvej 55, Odense M DK-5230, Denmark.

Controlling the spontaneous emission of nanoscale quantum emitters (QEs) is crucial for developing advanced photon sources required in many areas of modern nanophotonics, including quantum information technologies. Conventional approaches to shaping photon emission are based on using bulky configurations, while approaches recently developed in quantum metaphotonics suffer from limited capabilities in achieving desired polarization states and directionality, failing to provide on-demand photon sources tailored precisely to technological needs. Here, we propose a universal approach to designing versatile photon sources using on-chip QE-coupled meta-optics that enable direct transformations of QE-excited surface plasmon polaritons into spatially propagating photon streams with arbitrary polarization states, directionality, and amplitudes via both resonance and geometric phases supplied by scattering meta-atoms.

View Article and Find Full Text PDF

Multiple Exceptional Rings in One-Dimensional Perovskite Photonic Crystals.

Phys Rev Lett

August 2025

Jilin University, State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Changchun 130012, China.

Exceptional rings (ERs) are high-dimensional non-Hermitian topologies formed by exceptional points, significantly enriching the topological properties of non-Hermitian systems. Because of the intricate topology and symmetry requirements, the realization of ERs generally demands complex structures and precise parameter tuning, resulting in relatively few experimental observations in high-dimensional periodic systems. Here, we show that even the simplest 1D non-Hermitian periodic systems can support multiple ERs, enabled by the system's multiple degrees of freedom which naturally accommodate diverse non-Hermitian perturbations.

View Article and Find Full Text PDF

Polar protic and aprotic solvents can effectively simulate the maturation of breast carcinoma cells. Herein, the influence of polar protic solvents (water and ethanol) and aprotic solvents (acetone and DMSO) on the properties of 3-(dimethylaminomethyl)-5-nitroindole (DAMNI) was investigated using density functional theory (DFT) computations. Thermodynamic parameters retrieved from the vibrational analysis indicated that the DAMNI's entropy, heat capacity, and enthalpy increased with rising temperature.

View Article and Find Full Text PDF

We develop an ab initio framework that captures the impact of electron-electron and electron-hole interactions on phonon properties. This enables the inclusion of excitonic effects in the optical phonon dispersions and lifetimes of graphene, both near the center (Γ) and at the border (K) of the Brillouin zone, at phonon-momenta relevant for Raman scattering and for the onset of the intrinsic electrical resistivity. Near K, we find a phonon redshift of ∼150  cm^{-1} and a 10× enhancement of the group velocity, together with a 5× increase in linewidths due to a 26× increase of the electron-phonon matrix elements.

View Article and Find Full Text PDF