98%
921
2 minutes
20
The achievement of rapid and reliable image object tracking has long been crucial and challenging for the advancement of image-guided technology. This study investigates real-time object tracking by offering an image target based on nuclear correlation tracking and detection methods to address the challenge of real-time target tracking in complicated environments. In the tracking process, the nuclear-related tracking algorithm can effectively balance the tracking performance and running speed. However, the target tracking process also faces challenges such as model drift, the inability to handle target scale transformation, and target length. In order to propose a solution, this work is organized around the following main points: this study dedicates its first part to the research on kernelized correlation filters (KCFs), encompassing model training, object identification, and a dense sampling strategy based on a circulant matrix. This work developed a scale pyramid searching approach to address the shortcoming that a KCF cannot forecast the target scale. The tracker was expanded in two stages: the first stage output the target's two-dimensional coordinate location, and the second stage created the scale pyramid to identify the optimal target scale. Experiments show that this approach is capable of resolving the target size variation problem. The second part improved the KCF in two ways to meet the demands of a long-term object tracking task. This article introduces the initial object model, which effectively suppresses model drift. Secondly, an object detection module is implemented, and if the tracking module fails, the algorithm is redirected to the object detection module. The target detection module utilizes two detectors, a variance classifier and a KCF. Finally, this work includes trials on object tracking experiments and subsequent analysis of the results. Initially, this research provides a tracking algorithm assessment system, including an assessment methodology and the collection of test videos, which helped us to determine that the suggested technique outperforms the KCF tracking method. Additionally, the implementation of an evaluation system allows for an objective comparison of the proposed algorithm with other prominent tracking methods. We found that the suggested method outperforms others in terms of its accuracy and resilience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511169 | PMC |
http://dx.doi.org/10.3390/s24206600 | DOI Listing |
Bioinspir Biomim
September 2025
Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, Massachusetts, 02747-2300, UNITED STATES.
Harbor seals possess a remarkable ability to detect hydrodynamic footprints left by moving objects, even long after the objects have passed, through interactions between wake flows and their uniquely shaped whiskers. While the flow-induced vibration (FIV) of harbor seal whisker models has been extensively studied, their response to unsteady wakes generated by upstream moving bodies remains poorly understood. This study investigates the wake-induced vibration (WIV) of a flexibly mounted harbor seal-inspired whisker positioned downstream of a forced-oscillating circular cylinder, simulating the hydrodynamic footprint of a moving object.
View Article and Find Full Text PDFEvent-based sensors (EBS), with their low latency and high dynamic range, are a promising means for tracking unresolved point-objects. Conventional EBS centroiding methods assume the generated events follow a Gaussian distribution and require long event streams ($\gt 1$s) for accurate localization. However, these assumptions are inadequate for centroiding unresolved objects, since the EBS circuitry causes non-Gaussian event distributions, and because using long event streams negates the low-latency advantage of EBS.
View Article and Find Full Text PDFFront Hum Neurosci
August 2025
Department of Psychology, Northeastern University, Boston, MA, United States.
Mentalizing skills-the capacity to attribute mental states-play critical roles in word learning during typical language development. In autism, mentalizing difficulties may constrain word-learning pathways, limiting language-acquisition opportunities. We ask how autistic children encode and retrieve novel words and what drives individual differences.
View Article and Find Full Text PDFFront Sports Act Living
August 2025
Department of Psychology, University of Cyprus, Nicosia, Cyprus.
Introduction: In this study, we investigated the involvement of different aspects of attention in a light training task requiring fast physical responses to targets.
Methods: Fifty adult participants carried out drills in SpeedPad, a Virtual Reality (VR) adaptation of the Batak Pro and the Fitlight Trainer systems commonly used by athletes of various sports. Participants also carried out three established cognitive tasks on a desktop computer: the Posner cueing task, a visual conjunction search task, and a Motion Object Tracking (MOT) task.
Neuroscience
September 2025
Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Electronic address:
Visual motion perception declines during natural aging in most animals including humans. Edible berries of blackcurrant (BC) and its extracted anthocyanins (BCAs) have beneficial effects on human eyes. However, the effect of BCAs on the perception of moving objects and other dynamic visual patterns remains unknown.
View Article and Find Full Text PDF