Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Autonomous vehicles are revolutionizing the future of intelligent transportation systems by integrating smart and intelligent onboard units (OBUs) that minimize human intervention. These vehicles can communicate with their environment and one another, sharing critical information such as emergency alerts or media content. However, this communication infrastructure is susceptible to cyber-attacks, necessitating robust mechanisms for detection and defense. Among these, the most critical threat is the denial-of-service (DoS) attack, which can target any entity within the system that communicates with autonomous vehicles, including roadside units (RSUs), or other autonomous vehicles. Such attacks can lead to devastating consequences, including the disruption or complete cessation of service provision by the infrastructure or the autonomous vehicle itself. In this paper, we propose a system capable of detecting DoS attacks in autonomous vehicles across two scenarios: an infrastructure-based scenario and an infrastructureless scenario, corresponding to vehicle-to-everything communication (V2X) Mode 3 and Mode 4, respectively. For Mode 3, we propose an ensemble learning (EL) approach, while for the Mode 4 environment, we introduce a gossip learning (GL)-based approach. The gossip and ensemble learning approaches demonstrate remarkable achievements in detecting DoS attacks on the UNSW-NB15 dataset, with efficiencies of 98.82% and 99.16%, respectively. Moreover, these methods exhibit superior performance compared to existing schemes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511574 | PMC |
http://dx.doi.org/10.3390/s24206528 | DOI Listing |