98%
921
2 minutes
20
Although micron-sized microgels have become important building blocks in regenerative materials, offering decisive interactions with living matter, their chemical composition mostly significantly varies when their network morphology is tuned. Since cell behavior is simultaneously affected by the physical, chemical, and structural properties of the gel network, microgels with variable morphology but chemical equivalence are of interest. This work describes a new method to produce thermoresponsive microgels with defined mechanical properties, surface morphologies, and volume phase transition temperatures. A wide variety of microgels is synthesized by crosslinking monomers or star polymers at different temperatures using thermally assisted microfluidics. The diversification of microgels with different network structures and morphologies but of chemical equivalence offers a new platform of microgel building blocks with the ability to undergo phase transition at physiological temperatures. The method holds high potential to create soft and dynamic materials while maintaining the chemical composition for a wide variety of applications in biomedicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202411772 | DOI Listing |
Environ Sci Pollut Res Int
September 2025
Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
The significant global energy consumption strongly emphasizes the crucial role of net-zero or green structures in ensuring a sustainable future. Considering this aspect, incorporating thermal insulation materials into building components is a well-accepted method that helps to enhance thermal comfort in buildings. Furthermore, integrating architectural components made from solid refuse materials retrieved from the environment can have significant environmental benefits.
View Article and Find Full Text PDFLangmuir
September 2025
Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
The binary composites of liquid () and crystalline () difluoroboron β-diketonate (BFdbk) complexes exhibited a metastable nature arising from the intricate interplay between their liquid and crystalline components in bulk. Differential scanning calorimetry (DSC) measurements indicate nearly complete miscibility of and when the fractional volume of occupied a substantial portion, corresponding to below 47 mol % of the content. In contrast, polarized optical microscopic (POM) observations unveiled that the / composites between two glass slides crystallized regardless of the content.
View Article and Find Full Text PDFSmall
September 2025
Department of Materials Science and Engineering, Ludong University, Yantai, 264025, China.
With the continuous development of flexible sensors and flexible energy storage devices, gel materials with good flexibility, toughness, and tunable properties have attracted wide attention. Deep eutectic solvents (DES) have an obvious advantage of thermal and chemical stability over water. Therefore, eutectogels can effectively solve the problem of insufficient stability of traditional hydrogels.
View Article and Find Full Text PDFAnal Sci
September 2025
Frontier Laboratories Ltd., 4-16-20, Saikon, Koriyama, Fukushima, 963-8862, Japan.
Biomass-based polymers such as poly(lactic acid) (PLA) have attracted much attention, because they are renewable, biocompatible, and nontoxic to the environment and have been used in various fields such as biomedical, agricultural, and food packaging industries. However, one of the common drawbacks of PLA-based materials is their low glass transition temperature in the amorphous state, while adding phenylphosphonic acid zinc salt (PPA-Zn) as a nucleating agent was found to be a promising method to improve the physical property of PLA. On the other hand, degradation of PLA-based materials in the environment may cause the pollution from the metal of a nucleating agent in PLA and quantification of nucleating agents in polymers is of interest.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Riken, Center for Sustainable Resource Sciences, Saitama 351-0198, Japan.
-Adenosyl-l-methionine (SAM) is well-known as a methyl donor for methyltransferases but also functions as a 3-amino-3-carboxypropyl (3-ACP) donor for 3-ACP transferases. NAT is a 3-ACP transferase which accepts β-lactam antibiotic nocardicin G () and SAM to produce isonocardicin C. Due to the lack of structural information about this enzyme, its reaction mechanism has not been fully identified.
View Article and Find Full Text PDF