A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Early Detection of Lumpy Skin Disease in Cattle Using Deep Learning-A Comparative Analysis of Pretrained Models. | LitMetric

Early Detection of Lumpy Skin Disease in Cattle Using Deep Learning-A Comparative Analysis of Pretrained Models.

Vet Sci

Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, NS B2N 5E3, Canada.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lumpy Skin Disease (LSD) poses a significant threat to agricultural economies, particularly in livestock-dependent countries like India, due to its high transmission rate leading to severe morbidity and mortality among cattle. This underscores the urgent need for early and accurate detection to effectively manage and mitigate outbreaks. Leveraging advancements in computer vision and artificial intelligence, our research develops an automated system for LSD detection in cattle using deep learning techniques. We utilized two publicly available datasets comprising images of healthy cattle and those with LSD, including additional images of cattle affected by other diseases to enhance specificity and ensure the model detects LSD specifically rather than general illness signs. Our methodology involved preprocessing the images, applying data augmentation, and balancing the datasets to improve model generalizability. We evaluated over ten pretrained deep learning models-Xception, VGG16, VGG19, ResNet152V2, InceptionV3, MobileNetV2, DenseNet201, NASNetMobile, NASNetLarge, and EfficientNetV2S-using transfer learning. The models were rigorously trained and tested under diverse conditions, with performance assessed using metrics such as accuracy, sensitivity, specificity, precision, F1-score, and AUC-ROC. Notably, VGG16 and MobileNetV2 emerged as the most effective, achieving accuracies of 96.07% and 96.39%, sensitivities of 93.75% and 98.57%, and specificities of 97.14% and 94.59%, respectively. Our study critically highlights the strengths and limitations of each model, demonstrating that while high accuracy is achievable, sensitivity and specificity are crucial for clinical applicability. By meticulously detailing the performance characteristics and including images of cattle with other diseases, we ensured the robustness and reliability of the models. This comprehensive comparative analysis enriches our understanding of deep learning applications in veterinary diagnostics and makes a substantial contribution to the field of automated disease recognition in livestock farming. Our findings suggest that adopting such AI-driven diagnostic tools can enhance the early detection and control of LSD, ultimately benefiting animal health and the agricultural economy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512320PMC
http://dx.doi.org/10.3390/vetsci11100510DOI Listing

Publication Analysis

Top Keywords

deep learning
12
early detection
8
lumpy skin
8
skin disease
8
cattle deep
8
comparative analysis
8
images cattle
8
cattle diseases
8
sensitivity specificity
8
cattle
6

Similar Publications