Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ocular artifacts, including blinks and saccades, pose significant challenges in the analysis of electroencephalographic (EEG) data, often obscuring crucial neural signals. This tutorial provides a comprehensive guide to the most effective methods for correcting these artifacts, with a focus on algorithms designed for both laboratory and real-world settings. We review traditional approaches, such as regression-based techniques and Independent Component Analysis (ICA), alongside more advanced methods like Artifact Subspace Reconstruction (ASR) and deep learning-based algorithms. Through detailed step-by-step instructions and comparative analysis, this tutorial equips researchers with the tools necessary to maintain the integrity of EEG data, ensuring accurate and reliable results in neurophysiological studies. The strategies discussed are particularly relevant for wearable EEG systems and real-time applications, reflecting the growing demand for robust and adaptable solutions in applied neuroscience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505294PMC
http://dx.doi.org/10.3390/bioengineering11101018DOI Listing

Publication Analysis

Top Keywords

comprehensive guide
8
eeg data
8
optimizing eeg
4
eeg signal
4
signal integrity
4
integrity comprehensive
4
guide ocular
4
ocular artifact
4
artifact correction
4
correction ocular
4

Similar Publications

Purpose: Real‑time magnetic resonance-guided radiation therapy (MRgRT) integrates MRI with a linear accelerator (Linac) for gating and adaptive radiotherapy, which requires robust image‑quality assurance over a large field of view (FOV). Specialized phantoms capable of accommodating this extensive FOV are therefore essential. This study compares the performance of four commercial MRI phantoms on a 0.

View Article and Find Full Text PDF

Neuromuscular diseases are often accompanied by various types of sleep-related breathing disorders, which can exacerbate the underlying condition and are associated with a poor prognosis. Early identification is essential, and interventions such as non-invasive ventilation, oxygen therapy, and respiratory rehabilitation should be initiated promptly to mitigate disease progression and improve outcomes. Nevertheless, the rates of missed and misdiagnosed cases remain common in clinical practice.

View Article and Find Full Text PDF

Traditionally, clinical devices are designed, tested and improved through lengthy and expensive laboratory experiments and clinical trials [1]. More recently, computational methods have allowed for rapid testing, speeding up the design process and enabling far more complete searches of design space. While computational models cannot fully capture the complexities of biological systems, they provide valuable insights into crucial underlying mechanisms, such as the effects of fluid-structure interactions (FSIs).

View Article and Find Full Text PDF

Complex chromosomal changes in Acute Myeloid Leukemia (AML) are highly heterogeneous, with disease progression shaped by both the number and nature of abnormalities. Rarely do, multiple unrelated clones with independent chromosomal changes coexist at diagnosis. Present study showcases a comprehensive characterization of two cytogenetically distinct complex clones in AML, driven by non-cyclic and chromoplexy mechanisms, highlighting their co-existence with key molecular alterations (TP53, NF1, DNMT3A, TET2) along with their potential contribution to clonal evolution.

View Article and Find Full Text PDF

The lateral prefrontal cortex (LPFC) serves as a critical hub for higher-order cognitive and executive functions in the human brain, coordinating brain networks whose disruption has been implicated in many neurological and psychiatric disorders. While transcranial brain stimulation treatments often target the LPFC, our current understanding of connectivity profiles guiding these interventions based on electrophysiology remains limited. Here, we present a high-resolution probabilistic map of bidirectional effective connectivity between the LPFC and widespread cortical and subcortical regions.

View Article and Find Full Text PDF