98%
921
2 minutes
20
Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease leading to end-stage renal disease. Total kidney volume (TKV) measurement has been considered as a surrogate in the evaluation of disease severity and prognostic predictor of ADPKD. However, the traditional manual measurement of TKV by medical professionals is labor-intensive, time-consuming, and human error prone.
Materials And Methods: In this investigation, we conducted TKV measurements utilizing magnetic resonance imaging (MRI) data. The dataset consisted of 30 patients with ADPKD and 10 healthy individuals. To calculate TKV, we trained models using both coronal- and axial-section MRI images. The process involved extracting images in Digital Imaging and Communications in Medicine (DICOM) format, followed by augmentation and labeling. We employed a U-net model for image segmentation, generating mask images of the target areas. Subsequent post-processing steps and TKV estimation were performed based on the outputs obtained from these mask images.
Results: The average TKV, as assessed by medical professionals from the testing dataset, was 1501.84 ± 965.85 mL with axial-section images and 1740.31 ± 1172.21 mL with coronal-section images, respectively ( = 0.73). Utilizing the deep learning model, the mean TKV derived from axial- and coronal-section images was 1536.33 ± 958.68 mL and 1636.25 ± 964.67 mL, respectively ( = 0.85). The discrepancy in mean TKV between medical professionals and the deep learning model was 44.23 ± 58.69 mL with axial-section images ( = 0.8) and 329.12 ± 352.56 mL with coronal-section images ( = 0.9), respectively. The average variability in TKV measurement was 21.6% with the coronal-section model and 3.95% with the axial-section model. The axial-section model demonstrated a mean Dice Similarity Coefficient (DSC) of 0.89 ± 0.27 and an average patient-wise Jaccard coefficient of 0.86 ± 0.27, while the mean DSC and Jaccard coefficient of the coronal-section model were 0.82 ± 0.29 and 0.77 ± 0.31, respectively.
Conclusion: The integration of deep learning into image processing and interpretation is becoming increasingly prevalent in clinical practice. In our pilot study, we conducted a comparative analysis of the performance of a deep learning model alongside corresponding axial- and coronal-section models, a comparison that has been less explored in prior research. Our findings suggest that our deep learning model for TKV measurement performs comparably to medical professionals. However, we observed that varying image orientations could introduce measurement bias. Specifically, our AI model exhibited superior performance with axial-section images compared to coronal-section images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504157 | PMC |
http://dx.doi.org/10.3390/bioengineering11100963 | DOI Listing |
Hum Brain Mapp
September 2025
Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy.
Machine learning (ML) and deep learning (DL) methodologies have significantly advanced drug discovery and design in several aspects. Additionally, the integration of structure-based data has proven to successfully support and improve the models' predictions. Indeed, we previously demonstrated that combining molecular dynamics (MD)-derived descriptors with ML models allows to effectively classify kinase ligands as allosteric or orthosteric.
View Article and Find Full Text PDFACS Sens
September 2025
Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.
View Article and Find Full Text PDFMagn Reson Med
September 2025
Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
Purpose: To develop a deep learning-based reconstruction method for highly accelerated 3D time-of-flight MRA (TOF-MRA) that achieves high-quality reconstruction with robust generalization using extremely limited acquired raw data, addressing the challenge of time-consuming acquisition of high-resolution, whole-head angiograms.
Methods: A novel few-shot learning-based reconstruction framework is proposed, featuring a 3D variational network specifically designed for 3D TOF-MRA that is pre-trained on simulated complex-valued, multi-coil raw k-space datasets synthesized from diverse open-source magnitude images and fine-tuned using only two single-slab experimentally acquired datasets. The proposed approach was evaluated against existing methods on acquired retrospectively undersampled in vivo k-space data from five healthy volunteers and on prospectively undersampled data from two additional subjects.
Behav Res Methods
September 2025
Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic.
Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.
View Article and Find Full Text PDF