Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Dissolved organic matter (DOM) has a complex composition, which can interact with various pollutants and affect the removal of pollutants. Therefore, a thorough understanding of the interaction between the encccvironmental hormone nonylphenol (NP) and DOM is crucial for environmental impact and development. In this study, the interaction was investigated by means of excitation emission matrix (EEM) fluorescence spectroscopy, UV-Vis spectroscopy, FT-IR spectroscopy, nuclear magnetic resonance (NMR) and complex model analysis. The interaction between different MW DOM and NP was verified by the spectral characterization data. According to the characterization analysis, the main components of DOM in water samples were proteinoid (C1, C2, C4) with MW < 1 k Da, and their binding capacity (log K value) and binding site number (n) showed the maximum values (3.37, 3.24, 3.26; 0.81, 1.22, 0.52). For the humus like substance (C3) with larger molecular weight, the log K value and the number of binding points n increased with increasing molecular weight, and the maximum values were 3.13 and 0.31, respectively. It can be seen that low molecular weight proteins have strong binding ability and binding sites with NP, and high molecular weight humus also have strong binding ability. Overall, the interaction between DOM and NP has molecular weight dependence and heterogeneity. The purpose of this study is to deeply understand the interaction characteristics of different MW DOM with NP, and to provide theoretical support and reference for the study of the removal effects of NP pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143592 | DOI Listing |