Circularly polarized radiation to control the superconducting states: stability analysis.

J Phys Condens Matter

University of Bordeaux, LOMA UMR-CNRS 5798, F-33405 Talence, France.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, the use of circularly polarized radiation for on-demand switching between distinct quantum states in a superconducting nanoring exposed to half-quantum magnetic flux has been proposed. However, the effectiveness of this method depends on the system's stability against local variations in the superconducting characteristics of the ring and flux fluctuations. In this study, we utilize numerical simulations based on the time-dependent Ginzburg-Landau equation to evaluate the influence of these inevitable factors on the switching behavior. The results obtained demonstrate that the switching phenomena remain remarkably robust, providing confidence in their experimental observation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad8a57DOI Listing

Publication Analysis

Top Keywords

circularly polarized
8
polarized radiation
8
radiation control
4
control superconducting
4
superconducting states
4
states stability
4
stability analysis
4
analysis circularly
4
radiation on-demand
4
on-demand switching
4

Similar Publications

Molecules with an inverted singlet-triplet gap (Δ = - < 0) hold potential for optoelectronic applications as OLEDs and photocatalysis. Despite growing interest, no single-molecule emission from a chiral dye with an inverted gap has been reported, and only one case has shown such emission from supramolecular aggregates. Here, we present the first circularly polarized light emission (CPL) from a chiral molecule exhibiting an inverted singlet-triplet gap.

View Article and Find Full Text PDF

We propose a scheme for retrieving the ultrafast valley polarization (VP) dynamics in two-dimensional hexagonal materials via attosecond circular dichroism (CD) transient absorption spectroscopy. This approach builds on the CD transition between the first and higher conduction bands induced by the circularly polarized probe pulses. The population imbalance at nonequivalent valleys in the first conduction band is proportionally mapped onto the difference in absorption coefficients of two probe pulses with opposite helicities, supporting an unprecedented quantitative retrieval of the corresponding VP dynamics with subfemtosecond time resolution.

View Article and Find Full Text PDF

This study develops an integrated X-ray absorption spectroscopy (XAS) photoemission electron microscopy (PEEM) platform on beamline BL09U at the Shanghai Synchrotron Radiation Facility (SSRF), enabling nanoscale characterization of complex materials through energy-resolved imaging and local-area XAS. By using the wide range of energy tunability, full access to different polarizations and PEEM's surface sensitivity, we have established a gap-monochromator control system under the EPICS framework to synchronize the elliptically polarized undulator (EPU) gap and monochromator energy dynamically, optimizing photon flux stability for absorption fine structure analysis. Combining X-ray magnetic circular dichroism (XMCD) and X-ray magnetic linear dichroism (XMLD) with PEEM and local-area XAS, this platform achieves concurrent mapping of electronic structures and magnetic domains in ferromagnetic nano-patterns, as demonstrated through our studies of NiFe Permalloy using this system.

View Article and Find Full Text PDF

Pure-Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers with Discontinuous Fused Benzene Rings.

Adv Mater

September 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Helicene-based circularly polarized luminescence (CPL) materials suffer from severely low color purity in circularly polarized organic light-emitting diodes (CP-OLEDs). Here, a novel molecular engineering strategy is introduced by replacing helicene containing continuous fused benzene rings with a multiple resonance (MR) framework comprising discontinuous fused benzene rings. This approach effectively suppresses high-frequency C─C bond stretching vibrations and enhances short-range charge transfer, enabling high color purity, CPL activity, and efficient thermally activated delayed fluorescence (TADF).

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) has emerged as a critical technology for anticounterfeiting and optical display applications due to its unique chiroptical properties. We report a multicolor CPL-emitting elastomeric film (P37/PSK@SiO-PDMS) that synergistically combines chiral helical polyacetylene (P37) and a surface-engineered perovskite (PSK@SiO) through hydrogen-bond-directed assembly. Confinement within the PDMS matrix drives P37 to self-assemble into a chiral supramolecular structure through hydrogen bonding, inducing a chiroptical inversion.

View Article and Find Full Text PDF