A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Automated detection of motion artifacts in brain MR images using deep learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Quality assessment, including inspecting the images for artifacts, is a critical step during magnetic resonance imaging (MRI) data acquisition to ensure data quality and downstream analysis or interpretation success. This study demonstrates a deep learning (DL) model to detect rigid motion in T-weighted brain images. We leveraged a 2D convolutional neural network (CNN) trained on motion-synthesized data for three-class classification and tested it on publicly available retrospective and prospective datasets. Grad-CAM heatmaps enabled the identification of failure modes and provided an interpretation of the model's results. The model achieved average precision and recall metrics of 85% and 80% on six motion-simulated retrospective datasets. Additionally, the model's classifications on the prospective dataset showed 93% agreement with the labeling of a radiologist a strong inverse correlation (-0.84) compared to average edge strength, an image quality metric indicative of motion. This model is aimed at inline automatic detection of motion artifacts, accelerating part of the time-consuming quality assessment (QA) process and augmenting expertise on-site, particularly relevant in low-resource settings where local MR knowledge is scarce.

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.5276DOI Listing

Publication Analysis

Top Keywords

detection motion
8
motion artifacts
8
brain images
8
deep learning
8
quality assessment
8
automated detection
4
motion
4
artifacts brain
4
images deep
4
quality
4

Similar Publications