Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Biodegradable polymers from bioresources are highly in demand for the development of sustainable polymer platforms for commodity plastics and in the biomedical field. Here, an elegant one-pot synthetic strategy is developed, for the first time, to access unexplored hybrid polymers from two naturally abundant resources: carbohydrates (sugars) and l-amino acids. A bottleneck in the synthetic strategy is overcome by tailor-making d-mannitol-based six- and five-membered bicyclic acetalized diols, and their structures are confirmed by single-crystal X-ray diffraction and 2D NMR spectroscopy. l-Amino acids are converted into ester-urethane functional monomers, and they are polymerized with sugar-diols under solvent-free melt polycondensation to yield biodegradable poly(ester-urethane)s. Acid-catalyzed deprotection yielded amphiphilic polymers having exclusively alternating residues of sugar and l-amino acid in the polymer backbone. The polymer is self-assembled into 200 ± 10 nm sized nanoparticles that can encapsulate fluorescent dyes, are nontoxic to cells up to 250 μg/mL, and are readily endocytosed for lysosomal enzymatic biodegradation at the cellular level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.4c00993 | DOI Listing |