Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pro-angiogenic paracrine/autocrine signaling impacts myocardial repair in cell-based therapies. Activin A receptor-like type 1 (, ALK1) signaling plays a pivotal role in cardiovascular development and maintenance, but its importance in human-derived therapeutic cardiac cells is not well understood. Here, we isolated a subpopulation of human highly proliferative cells (hHiPCs) from adult epicardial tissue and found that they express ALK1, a high affinity receptor for bone morphogenetic protein-9 (BMP9), which signals via SMAD1/5 to regulate paracrine/autocrine signaling and angiogenesis. We show that in humans, circulating BMP9 level is negatively associated with the number of epicardial hHiPC and positively associated with endothelial cell (EC) number in the adult heart, implicating the potential importance of this signaling pathway in cardiac cell fate and vascular maintenance. To investigate BMP9/ALK1 signaling in hHiPCs, we selected a primary cell population of hHiPC from each of 3 individuals and studied their responses to BMP9 and BMP10 treatment . Proteins were collected in conditioned media (CM) for mass spectrometry and cell-based assays on human ECs and hHiPCs. Proteomic analysis of the hHiPC secretome following BMP9 or BMP10 treatment demonstrates that the secreted proteins, sclerostin (SOST), meflin/immunoglobulin superfamily containing leucine rich repeat (ISLR), and insulin-like growth factor binding protein-3 (IGFBP3), are novel regulated targets of BMP9/ALK1 signaling. Lentiviral shRNA and pharmacological inhibition of ALK1 in hHiPCs suppressed transcription and secretion of SOST, ISLR, and IGFBP3 following BMP9 treatment. Moreover, the BMP9-treated secretome of hHiPC increased capillary-like tube formation of ECs and hHiPCs. Treatment of hHiPCs with recombinant SOST increased expression, increased tube formation and enhanced expression of EC receptor marker annexin A2 (ANXA2). These data provide the first proteomic characterization of hHiPC, identifying BMP9/ALK1-mediated target protein secretion in hHiPCs, and underscore the complex role of BMP9/ALK1 signaling in paracrine/autocrine mediated angiogenesis. Data are available via ProteomeXchange with identifier PXD055302.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488643PMC
http://dx.doi.org/10.33696/signaling.5.119DOI Listing

Publication Analysis

Top Keywords

bmp9/alk1 signaling
12
alk1 signaling
8
paracrine/autocrine signaling
8
bmp9 bmp10
8
bmp10 treatment
8
ecs hhipcs
8
tube formation
8
signaling
7
hhipcs
7
bmp9
5

Similar Publications

Pro-angiogenic paracrine/autocrine signaling impacts myocardial repair in cell-based therapies. Activin A receptor-like type 1 (, ALK1) signaling plays a pivotal role in cardiovascular development and maintenance, but its importance in human-derived therapeutic cardiac cells is not well understood. Here, we isolated a subpopulation of human highly proliferative cells (hHiPCs) from adult epicardial tissue and found that they express ALK1, a high affinity receptor for bone morphogenetic protein-9 (BMP9), which signals via SMAD1/5 to regulate paracrine/autocrine signaling and angiogenesis.

View Article and Find Full Text PDF

Defining next-generation immune therapeutics for the treatment of sepsis will involve biomarker-based therapeutic decision-making. Bone morphogenetic protein 9 (BMP9) is a cytokine in the transforming growth factor-β superfamily. Here, circulating BMP9 concentrations were quantified in two independent cohorts of patients with sepsis.

View Article and Find Full Text PDF

Background: Fluid shear stress enhances endothelial SMAD1/5 signaling via the BMP9-bound ALK1 receptor complex supported by the co-receptor Endoglin. While moderate SMAD1/5 activation is required to maintain endothelial quiescence, excessive SMAD1/5 signaling promotes endothelial dysfunction. Increased BMP signaling participates in endothelial-to-mesenchymal transition and inflammation culminating in vascular diseases such as atherosclerosis.

View Article and Find Full Text PDF

Background And Aims: In hereditary hemorrhagic telangiectasia (HHT), severe liver vascular malformations are associated with mutations in the Activin A Receptor-Like Type 1 ( ACVRL1 ) gene encoding ALK1, the receptor for bone morphogenetic protein (BMP) 9/BMP10, which regulates blood vessel development. Here, we established an HHT mouse model with exclusive liver involvement and adequate life expectancy to investigate ALK1 signaling in liver vessel formation and metabolic function.

Approach And Results: Liver sinusoidal endothelial cell (LSEC)-selective Cre deleter line, Stab2-iCreF3 , was crossed with Acvrl1 -floxed mice to generate LSEC-specific Acvrl1 -deficient mice ( Alk1HEC-KO ).

View Article and Find Full Text PDF

Rethinking growth factors: the case of BMP9 during vessel maturation.

Vasc Biol

February 2022

Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain.

Angiogenesis is an essential process for correct development and physiology. This mechanism is tightly regulated by many signals that activate several pathways, which are constantly interacting with each other. There is mounting evidence that BMP9/ALK1 pathway is essential for a correct vessel maturation.

View Article and Find Full Text PDF