A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Response of sediment with Ca/Al composites capping to cyanobacterial bloom decline: Blocking the formation and the release of sediment iron-bound phosphorus (Fe-P). | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The immobilization of phosphorus (P) in sediments plays a pivotal role in managing lake eutrophication over the long term. Therefore, key factors that may cause uncertainties in P fixation are of increasing interest to researchers. Calcium‑aluminum composites (CA) can passivate sediment P well; however, the effect of cyanobacterial bloom decline on their sediment P remediation remains unclear. In this study, CA addition significantly reduced P equilibrium concentration as well as augmented P adsorption capacity of sediment characterized as cyanobacterial dominance zone (CDZ). The results of the simulated experiments on cyanobacterial bloom decline indicated that the algae decomposition led to a rapid decrease in dissolved oxygen (DO) level, and to release amounts of P, thus increasing the P concentration in the overlying water. The released algal P into the sediment primarily encouraged the formation of iron-bound phosphorus (Fe-P), followed by calcium-bound phosphorus (Ca-P). The subsequent anaerobic incubation led to a notable release of the newly formed Fe-P, strengthening the anaerobic P release from sediments. Conversely, CA-capping accelerated the adsorption of algal P by sediments, and promoted the formation of Ca-P in sediment from cyanobacterial P, hindering the generation of reactive Fe-P. Moreover, during subsequent anaerobic incubation, the P forms in sediments capped with CA remained stable, showing no obvious P release. These findings suggested that CA capping induced the formation of stable P from algal P and disrupted the positive feedback effect between P contamination in sediments and cyanobacterial blooms, which would provide valuable insights for the remediation of sediments in CDZ.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.177044DOI Listing

Publication Analysis

Top Keywords

cyanobacterial bloom
12
bloom decline
12
iron-bound phosphorus
8
phosphorus fe-p
8
subsequent anaerobic
8
anaerobic incubation
8
cyanobacterial
6
sediment
6
sediments
6
release
5

Similar Publications