A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Improving Inference Within Freshwater Community Studies: Accounting for Variable Detection Rates of Amphibians and Fish. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Research into freshwater communities often aims to link patterns of species distribution in ponds with underlying biotic factors. However, errors with species detection (e.g. false negatives) may underestimate distribution and bias assessments of community structure. Occupancy models that account for imperfect detection offer a solution to this problem. Here, we used three methods (call/visual encounter surveys, dip-netting and newt trapping) to survey amphibians and fish (potential amphibian predators) at 100 ponds in an urbanised landscape in Hungary over one breeding season. We estimated species detection probabilities for amphibians (all life stages combined) and fish using occupancy models to gain insight into amphibian-fish relationships and other survey-specific variables. We detected nine amphibian and 20 fish species. There were relatively low but variable estimated probabilities of detection for amphibians (mean: 0.320, 95% Bayesian credible interval: 0.142-0.598), with three species having detection rates < 0.1. Probabilities of detection peaked in the middle of the breeding season and increased with survey effort. Detection probabilities of five species were negatively associated with the detection of fish at a pond, while there were positive relationships between detection and emergent vegetation cover. We found no substantial differences in detection rates among the three survey methods. The probability of detecting fish was much higher than for amphibians (0.588, 0.503-0.717) but was lower at ponds with high emergent vegetation where amphibian detection was higher. Our results underscore the importance of accounting for the imperfect detection of both response organisms and potentially interacting species in aquatic community studies. We recommend applying multi-species occupancy models to enable inference for both common and rare species at ponds in landscapes subjected to human disturbances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483536PMC
http://dx.doi.org/10.1002/ece3.70383DOI Listing

Publication Analysis

Top Keywords

species detection
12
detection rates
8
amphibians fish
8
occupancy models
8
detection
6
species
5
improving inference
4
inference freshwater
4
freshwater community
4
community studies
4

Similar Publications