A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine learning-based classification of valvular heart disease using cardiovascular risk factors. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Valvular Heart Disease (VHD) is a globally significant cause of mortality, particularly among aging populations. Despite advancements in percutaneous and surgical interventions, there are still uncertainties that remain regarding the risk factors that significantly contribute to this condition within the domain of cardiovascular disease. This study investigates these uncertainties and the role of machine learning in categorizing VHD based on cardiovascular risk factors. It follows a two-part investigation comprising feature extraction and classification phases. Feature extraction is initially performed using a wrapping approach and refined further with binary logistic regression. The second phase employs five classifiers: Artificial Neural Network (ANN), XGBoost, Random Forest (RF), Naïve Bayes, and Support Vector Machine (SVM), along with advanced methods such as SVM combined with Principal Component Analysis (PCA) and a majority-voting ensemble method (MV5). Data on VHD cases were collected from DHQ Hospital Faisalabad using simple random sampling. Various statistical measures, such as the ROC curve, F-measure, sensitivity, specificity, accuracy, MCC, and Kappa are applied to assess the results. The findings reveal that the combination of SVM with PCA achieves the highest overall performance while the MV5 ensemble method also demonstrates high accuracy and balance in sensitivity and specificity. The variation in VHD prevalence linked to specific risk factors highlights the importance of a comprehensive approach to reduce this disease's burden. The Exceptional performance of SVM + PCA and MV5 highlights their significance in diagnosing VHD and advancing knowledge in biomedicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487281PMC
http://dx.doi.org/10.1038/s41598-024-67973-zDOI Listing

Publication Analysis

Top Keywords

risk factors
16
valvular heart
8
heart disease
8
cardiovascular risk
8
feature extraction
8
ensemble method
8
sensitivity specificity
8
vhd
5
machine learning-based
4
learning-based classification
4

Similar Publications