98%
921
2 minutes
20
The secondary plastoquinone (PQ) electron acceptor Q in photosystem II (PSII) undergoes a two-step photoreaction through electron transfer from the primary PQ electron acceptor Q, converting into plastoquinol (PQH). However, the detailed mechanism of the Q reactions remains elusive. Here, we investigated the reaction mechanism of Q in cyanobacterial PSII core complexes using two time-revolved infrared (TRIR) methods: dispersive-type TRIR spectroscopy and rapid-scan Fourier transform infrared spectroscopy. Upon the first flash, the ∼140 μs phase is attributed to electron transfer from Q to Q, while the ∼2.2 and ∼440 ms phases are assigned to the binding of an internal PQ in a nearby cavity to the vacant Q site and an external PQ traveling to the Q site through channels, respectively, followed by immediate electron transfer. The resultant Q is suggested to be in equilibrium with QH, which is protonated at the distal oxygen. Upon the second flash, the ∼130 μs and ∼3.3 ms phases are attributed to electron transfer to QH and the protonation of Q followed by electron transfer, respectively, forming QH, which then immediately accepts a proton from D1-H215 at the proximal oxygen to become QH. The resultant D1-H215 anion is reprotonated in ∼22 ms via a pathway involving the bicarbonate ligand. The final ∼490 ms phase may reflect the release of PQH and its replacement with PQ. The present results highlight the importance of time-resolved infrared spectroscopy in elucidating the mechanism of Q reactions in PSII.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.4c00509 | DOI Listing |
ACS Electrochem
September 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Reaction rate coefficients for electron-transfer processes at the electrode-electrolyte interface are commonly estimated by using the Butler-Volmer equation, but their values are inaccurate beyond a few tenths of volts of overpotential. The Marcus-Hush-Chidsey (MHC) formalism yields correct asymptotic behavior of the rate coefficients vs applied overpotential but has complex dependencies on the redox system's intrinsic parameters, which can be difficult to model or measure. In this work, we bridge the two kinetics formalisms to estimate the reorganization energy, one of the important parameters for the MHC formalism, and investigate its dependence on other intrinsic parameters such as activation barriers, electronic coupling strength, and the density of states of the electrode surface.
View Article and Find Full Text PDFRSC Adv
September 2025
Laboratory of Spectroscopic Characterization and Optical Materials, Faculty of Sciences, University of Sfax B.P. 1171 3000 Sfax Tunisia
Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.
View Article and Find Full Text PDFCureus
August 2025
Acute Medicine, Weston General Hospital, University Hospitals Bristol and Weston, Weston-super-Mare, GBR.
Methemoglobinemia is an uncommon yet potentially life-threatening condition that results from the oxidation of iron from the ferrous (Fe²⁺) to the ferric (Fe³⁺) state, rendering hemoglobin unable to effectively transport oxygen. This translates into a state of functional hypoxia despite adequate arterial oxygen tension. Among the various causes of acquired methemoglobinemia, recreational inhalation of alkyl nitrites, widely known as "poppers," is a notable but underrecognized trigger.
View Article and Find Full Text PDFChemistry
September 2025
Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany.
Iron-based photocatalysis has emerged as a sustainable and versatile platform for facilitating a wide range of chemical transformations, offering an appealing alternative to precious metal photocatalysts. Among the various activation modes, ligand-to-metal charge transfer (LMCT)-driven homolysis of Fe(III)-L(ligand) bonds has garnered considerable attention due to its ability to generate reactive radical species under mild conditions, without requiring the matching of substrates' redox potentials. In this review, we present a comprehensive overview of recent developments in LMCT-driven iron photocatalysis, with a particular focus on both mechanistic insights and synthetic applications published in the last five years.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, State Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China.
The construction of C─N bonds from simple precursors under ambient conditions is a fundamental challenge in green chemistry, especially when it comes to avoiding energy-intensive protocols. Here, we present a continuous flow photocatalytic platform that enables the efficient coupling of C─N bonds between methanol and ammonia at ambient temperature and pressure. By synergistically engineering a Pd clusters-decorated TiO photocatalyst (1Pd/TiO) and a mass transfer-enhanced gas-liquid-solid Taylor flow reactor, the system achieves a remarkable formamide productivity of 256.
View Article and Find Full Text PDF