Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this study, multi-element nitride coatings composed of (Ti, Cr, Cu, Al, Si)N were synthesized on H13 tool steel using cathodic arc deposition (CAD) technology. The N/Ar flow ratio varied from 0 to 2 as the experimental parameter, and two targets, Ti-Cr-Cu and Al-Si alloys, were utilized simultaneously. The impact of the gas flow ratio on the coatings' abrasion properties was investigated, focusing on aspects, such as chemical composition, adhesion, hardness, and wear behavior. The experimental findings indicate that the coated specimens with a nitrogen reaction exhibit superior hardness and abrasion resistance compared to those without nitrogen use. While the surface roughness of the specimens tends to increase slightly with a higher N2/Ar ratio, the coating demonstrates improved hardness, adhesion, and abrasion resistance performance. In summary, the wear-resistant characteristics of H13 tool steel can be significantly enhanced when applying a CAD-(Ti, Cr, Cu, Al, Si)N film with a flow ratio of N/Ar = 2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478053 | PMC |
http://dx.doi.org/10.3390/ma17194748 | DOI Listing |