A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Collaborative Joint Perception and Prediction for Autonomous Driving. | LitMetric

Collaborative Joint Perception and Prediction for Autonomous Driving.

Sensors (Basel)

Cooperative Medianet Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Collaboration among road agents, such as connected autonomous vehicles and roadside units, enhances driving performance by enabling the exchange of valuable information. However, existing collaboration methods predominantly focus on perception tasks and rely on single-frame static information sharing, which limits the effective exchange of temporal data and hinders broader applications of collaboration. To address this challenge, we propose CoPnP, a novel collaborative joint perception and prediction system, whose core innovation is to realize multi-frame spatial-temporal information sharing. To achieve effective and communication-efficient information sharing, two novel designs are proposed: (1) a task-oriented spatial-temporal information-refinement model, which filters redundant and noisy multi-frame features into concise representations; (2) a spatial-temporal importance-aware feature-fusion model, which comprehensively fuses features from various agents. The proposed CoPnP expands the benefits of collaboration among road agents to the joint perception and prediction task. The experimental results demonstrate that CoPnP outperforms existing state-of-the-art collaboration methods, achieving a significant performance-communication trade-off and yielding up to 11.51%/10.34% Intersection over union and 12.31%/10.96% video panoptic quality gains over single-agent PnP on the OPV2V/V2XSet datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478810PMC
http://dx.doi.org/10.3390/s24196263DOI Listing

Publication Analysis

Top Keywords

joint perception
12
perception prediction
12
collaborative joint
8
collaboration road
8
road agents
8
collaboration methods
8
collaboration
5
perception
4
prediction autonomous
4
autonomous driving
4

Similar Publications