Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chromogranin B (CgB) is involved in the control of the cardiovascular system through the regulation of catecholamine release. Whether CgB can exert direct actions on the endothelium has not yet been clarified. Here, we aimed to investigate the effects of CgB on cell viability, mitochondrial membrane potential, reactive oxygen species (ROS), glutathione (GSH), nitric oxide (NO) release, and the cytosolic calcium concentration ([Ca]c) in human vascular endothelial cells (HUVECs) cultured under both physiological and peroxidative conditions. In HUVECs, experiments were conducted to establish the proper concentration and timing of CgB stimulation. Thereafter, specific assays were used to evaluate the response of HUVECs cultured in physiologic or oxidative stress conditions to CgB in the presence or absence of β-adrenergic receptor agonists and antagonists and intracellular pathways blockers. Analysis of cell viability, mitochondrial membrane potential, and NO release revealed that CgB was able to cause increased effects in HUVECs cultured in physiological conditions. Additionally, the same analyses performed in HUVECs cultured with HO, showed protective effects exerted by CgB, which was also able to counteract ROS release and maintain GSH levels. Furthermore, CgB played a dual role on the [Ca]c depending on the physiological or peroxidative cell culturing conditions. In conclusion, our data provide new information about the direct role of CgB in the physiological regulation of endothelial function and highlight its potential as a protective agent against peroxidative conditions, such as those found in cardiovascular diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476595PMC
http://dx.doi.org/10.3390/ijms251910296DOI Listing

Publication Analysis

Top Keywords

huvecs cultured
16
cgb
9
endothelial cells
8
oxidative stress
8
cell viability
8
viability mitochondrial
8
mitochondrial membrane
8
membrane potential
8
cultured physiological
8
physiological peroxidative
8

Similar Publications

[β-sitosterol, an important component in the fruits of Miq., prolongs lifespan of by suppressing the ferroptosis pathway].

Nan Fang Yi Ke Da Xue Xue Bao

August 2025

Department of Pathogenic Biology & Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University. Haikou 571199, China.

Objectives: To elucidate the anti-aging effect of β-sitosterol (BS), an important component in the fruits of Miq., in and its regulatory effect on ETS-5 gene to modulate ferroptosis.

Methods: treated with 10 µg/mL BS were monitored for survival time and changes in body length, motility, and reproductive function.

View Article and Find Full Text PDF

The senescent cell (SC) fate is linked to aging, multiple disorders and diseases, and physical dysfunction. Senolytics, agents that selectively eliminate 30-70% of SCs, act by transiently disabling the senescent cell anti-apoptotic pathways (SCAPs), which defend those SCs that are pro-apoptotic and pro-inflammatory from their own senescence-associated secretory phenotype (SASP). Consistent with this, a JAK/STAT inhibitor, Ruxolitinib, which attenuates the pro-inflammatory SASP of senescent human preadipocytes, caused them to become "senolytic-resistant".

View Article and Find Full Text PDF

Background: Diabetic vascular complications present significant clinical challenges, including limited treatment efficacy, high postoperative restenosis rates, and delayed early diagnosis. This study investigates CXCR4-modified adipose-derived mesenchymal stem cells (AMSCs/CXCR4) in regulating pathological endothelial proliferation under hyperglycemic conditions.

Aims: The purpose is to provide new mechanism insights and potential therapeutic targets for early intervention of diabetes-related vascular diseases.

View Article and Find Full Text PDF

Background: Renal fibrosis is a common pathological feature of chronic kidney disease (CKD), but its underlying mechanisms remain incompletely understood. Our previous study demonstrated that insulin-like growth factor-binding protein 5 (IGFBP-5) promotes glycolytic reprogramming in vascular endothelial cells (ECs) and exacerbates renal inflammation in diabetic kidney disease (DKD).

Methods: Human renal proximal tubular epithelial cells (HK-2) and human umbilical vein endothelial cells (HUVECs) were used.

View Article and Find Full Text PDF

Human induced pluripotent stem cell-derived nanovesicles for the treatment of ischemic limb disease.

Acta Biomater

August 2025

Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. Electronic address:

Critical limb ischemia is an advanced stage of peripheral artery disease, characterized by claudication, ischemic pain, and ulceration. It is a severe condition associated with an increased risk of limb amputation and mortality. Although extracellular vehicles (EVs) secreted by endothelial cells (ECs) or mesenchymal stem cells (MSCs) have shown promise for the treatment of ischemic limb diseases in mice, clinical translation has been limited by the low EV yields from cultured cells.

View Article and Find Full Text PDF