Highly Stretchable Composite Conductive Fibers (SCCFs) and Their Applications.

Polymers (Basel)

The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stretchable composite conductive fibers (SCCFs) exhibit remarkable conductivity, stretchability, breathability, and biocompatibility, making them ideal candidates for wearable electronics and bioelectronics. The exploitation of SCCFs in electronic devices requires a careful balance of many aspects, including material selection and process methodologies, to address the complex challenges associated with their electrical and mechanical properties. In this review, we elucidate the conductive mechanism of SCCFs and summarize strategies for integrating various conductors with stretchable fibers, emphasizing the primary challenges in fabricating highly conductive fibers. Furthermore, we explore the multifaceted applications of SCCFs-based frameworks in wearable electronic devices. This review aims to emphasize the significance of SCCFs and offers insights into their conductive mechanisms, material selection, manufacturing technologies, and performance improvement. Hopefully, it can guide the innovative development of SCCFs and broaden their application potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478555PMC
http://dx.doi.org/10.3390/polym16192710DOI Listing

Publication Analysis

Top Keywords

conductive fibers
12
stretchable composite
8
composite conductive
8
fibers sccfs
8
electronic devices
8
material selection
8
sccfs
6
conductive
5
highly stretchable
4
fibers
4

Similar Publications

Insects and plants have been locked in an evolutionary arms race spanning 350 million years. Insects evolved specialized tools to cut into plant tissue, and plants, to counter these attacks, developed diverse defence strategies. Much previous worked has focused on chemical defences.

View Article and Find Full Text PDF

Effect of C-Terminal Residue on the Phase Behavior and Properties of β-Sheet Forming Self-Assembling Peptide Hydrogels.

Biomacromolecules

September 2025

Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.

This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.

View Article and Find Full Text PDF

Novel Grm6 Variant in a no b-wave (nob) Mouse Model: Phenotype Characterization and Gene Therapy.

Invest Ophthalmol Vis Sci

September 2025

Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, New York, United States.

Purpose: To characterize a no b-wave (nob) mouse model of congenital stationary night blindness (CSNB) caused by a Grm6 variant that disrupts photoreceptor-to-bipolar cell signaling. Additionally, we aim to evaluate the efficacy of gene therapy in restoring visual function.

Methods: The nob mouse was generated through selective breeding to regenerate the nob phenotype.

View Article and Find Full Text PDF

Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.

View Article and Find Full Text PDF

Purpose: The purpose of this prospective study was to investigate the effect of Kaplan fibres (KF), anterolateral ligament (ALL) and lateral meniscus (LM) injuries on preoperative anterolateral rotational instability (ALRI) in anterior cruciate ligament (ACL)-injured knees. It was hypothesised that injuries to the ALC (i.e.

View Article and Find Full Text PDF