Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding variation in chromatin contact patterns across diverse humans is critical for interpreting noncoding variants and their effects on gene expression and phenotypes. However, experimental determination of chromatin contact patterns across large samples is prohibitively expensive. To overcome this challenge, we develop and validate a machine learning method to quantify the variation in 3D chromatin contacts at 2 kilobase resolution from genome sequence alone. We apply this approach to thousands of human genomes from the 1000 Genomes Project and the inferred hominin ancestral genome. While patterns of 3D contact divergence genome wide are qualitatively similar to patterns of sequence divergence, we find substantial differences in 3D divergence and sequence divergence in local 1 megabase genomic windows. In particular, we identify 392 windows with significantly greater 3D divergence than expected from sequence. Moreover, for 31% of genomic windows, a single individual has a rare divergent 3D contact map pattern. Using in silico mutagenesis, we find that most single nucleotide sequence changes do not result in changes to 3D chromatin contacts. However, in windows with substantial 3D divergence just one or a few variants can lead to divergent 3D chromatin contacts without the individuals carrying those variants having high sequence divergence. In summary, inferring 3D chromatin contact maps across human populations reveals variable contact patterns. We anticipate that these genetically diverse maps of 3D chromatin contact will provide a reference for future work on the function and evolution of 3D chromatin contact variation across human populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523124PMC
http://dx.doi.org/10.1093/molbev/msae209DOI Listing

Publication Analysis

Top Keywords

chromatin contact
24
contact patterns
16
chromatin contacts
12
sequence divergence
12
chromatin
9
contact
9
machine learning
8
variation chromatin
8
genomic windows
8
human populations
8

Similar Publications

We study how protein condensates respond to a site of active RNA transcription (i.e., a gene promoter) due to electrostatic protein-RNA interactions.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) relevant to osteoporosis have identified hundreds of loci; however, understanding how these variants influence the phenotype is complicated because most reside in non-coding DNA sequence that serves as transcriptional enhancers and repressors. To advance knowledge on these regulatory elements in osteoclasts (OCs), we performed Micro-C analysis, which informs on the genome topology of these cells and integrated the results with transcriptome and GWAS data to further define loci linked to BMD. Using blood cells isolated from 4 healthy participants aged 31-61 yr, we cultured OC in vitro and generated a Micro-C chromatin conformation capture dataset.

View Article and Find Full Text PDF

Recent advances in single-cell bioinformatics for inferring higher-order chromatin contact maps.

BMB Rep

September 2025

Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.

DNA, a large molecule located in the nucleus, carries essential genetic information, including gene loci and cis-regulatory elements. Despite its extensive length, DNA is compactly stored within the limited space of the nucleus due to its hierarchical three-dimensional (3D) organization. In this structure, DNA is organized into territories known as topologically associated domains (TADs).

View Article and Find Full Text PDF

Double-strand breaks represent the most dangerous form of DNA damage, and in resting cells, these breaks are sealed via the non-homologous end joining (NHEJ) factor Ligase IV (LIG4). Excessive NHEJ may be genotoxic, necessitating multiple mechanisms to control NHEJ activity. However, a clear mechanism of transcriptional control for them has not yet been identified.

View Article and Find Full Text PDF

Diverse epigenetic regulatory mechanisms ensure and regulate cellular diversity. Among others, the histone 3 lysine 9 me3 (H3K9me3) post translational modification participates in silencing lineage-inappropriate genes. H3K9me3 restricts access of transcription factors and other regulatory proteins to cell-fate controlled genes.

View Article and Find Full Text PDF